ANALYSIS OF THE EFFECTIVENESS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IMPLEMENTATION AT THE DESIGN STAGE OF RESTAURANT ENTERPRISES
Abstract
This article presents a comprehensive and structured analysis of the effectiveness, strategic value, and real-world applications of artificial intelligence (AI) technologies at the design stage of restaurant enterprises. While most existing studies emphasize AI use in operations and customer-facing functions, this research focuses on the pre-opening conceptual phase, where foundational decisions are made regarding layout planning, infrastructure, target audience segmentation, financial projections, menu strategy, and marketing approach. This early stage plays a decisive role in business outcomes, particularly in unstable environments such as Ukraine, where limited investment access and operational uncertainty require efficient, data-driven planning. The main objective of the study is to explore the most impactful AI solutions for early-stage restaurant development, including generative design, predictive budgeting, demand forecasting, algorithmic menu engineering, and digital channel personalization. A mixed-methods design was applied, combining a quantitative survey of 150 professionals in the hospitality sector with 10 qualitative interviews involving experts in architecture, consulting, and technological innovation. Findings reveal that, despite low levels of adoption, AI tools significantly enhance decision-making, reduce planning time, improve resource allocation, and support adaptation to dynamic market conditions. Key barriers include high implementation costs, lack of awareness, and limited digital competence among small and medium-sized enterprises. The article offers actionable recommendations for restaurateurs, digital solution providers, consultants, and educators. It emphasizes the importance of revising hospitality training programs to include AI-based tools and digital design thinking, enabling future professionals to meet the growing demands of a smart, innovation-driven service economy. The study expands the academic discourse on AI in hospitality by showing its potential to shape business models from inception—not only during operations.
References
Fedosova K., Katunian A. The use of Artificial Intelligence in the restaurant business // Turystyka i Rozwój Regionalny. – 2024. – Vol. 22. – P. 43–51. – DOI: 10.22630/TIRR.2024.22.16.
Винничук Р. О. Штучний інтелект в харчовій промисловості // Грааль науки. – 2024. – № 43. – С. 335–343. – DOI: 10.36074/grail-of-science.06.09.2024.043.
Hussain M., Hashim H., Rahman N. A. Application of artificial intelligence in the food industry: A guideline // Food Engineering Reviews. – 2021. – Vol. 13, No. 4. – P. 690–707. – DOI: 10.1007/s12393-021-09263-7.
Dyshkantiuk Y., Vlasiuk K. Immersive technologies as a tool for innovation in restaurant business management // Entrepreneurship and Innovation. – 2023. – No. 29. – P. 147–152. – DOI: 10.32782/2415-3583/29.22.
Григор’єва Т., Розенвассер Д., Дишкантюк Ю. Інформаційні технології в бізнесі // Економіка та суспільство. – 2025. – № 72. – С. 1–8. – DOI: 10.32782/2524-0072/2025-72-33.
Napier A., Smith B. AI in tourism and customer service // Tourism Technology Journal. – 2021. – Vol. 19, No. 2. – P. 45–67.
Ramirez-Asis E., et al. Machine learning in food supply chain management: A review // Materials Today: Proceedings. – 2022. – Vol. 51. – P. 2462–2465. – DOI: 10.1016/j.matpr.2021.07.223.
McKinsey & Company. AI trends in the hospitality industry // McKinsey Global Report. – 2023. – URL: https://www.mckinsey.com/.
Bouzembrak Y., et al. AI-driven decision making in food technology // Food Science Advances. – 2023. – Vol. 23, No. 1. – P. 99–115.
Napier A., Smith B. AI in restaurant management systems // Restaurant Technology Journal. – 2021. – Vol. 21, No. 1. – P. 101–115.
Berezina K., Ciftci O., Cobanoglu C. Robots, Artificial Intelligence, and Service Automation in Restaurants // In: Ivanov S., Webster C. (Eds.). Robots, Artificial Intelligence, and Service Automation in Travel, Tourism and Hospitality. – Leeds : Emerald Publishing, 2019. – P. 185–219. – DOI: 10.1108/978-1-78756-687-320191010.
Johnson R. B., Onwuegbuzie A. J., Turner L. A. Toward a definition of mixed methods research // Journal of Mixed Methods Research. – 2007. – Vol. 1, No. 2. – P. 112–133. – DOI: 10.1177/1558689806298224.
Harrison R. L., Reilly T. M. Mixed methods designs in marketing research // Qualitative Market Research: An International Journal. – 2011. – Vol. 14, No. 1. – P. 7–26. – DOI: 10.1108/13522751111099300.
Bryman A. Social research methods. – 4th ed. – Oxford : Oxford University Press, 2012. – 766 p.
Kvale S. InterViews: An introduction to qualitative research interviewing. – Thousand Oaks : Sage Publications, 1996. – 326 p.
Yin R. K. Case study research: Design and methods. – 5th ed. – Thousand Oaks : Sage Publications, 2014. – 282 p.
Braun V., Clarke V. Using thematic analysis in psychology // Qualitative Research in Psychology. – 2006. – Vol. 3, No. 2. – P. 77–101. – DOI: https://doi.org/10.1191/1478088706qp063oa.
Fedosova, K., & Katunian, A. (2024). The use of artificial intelligence in the restaurant business. Turystyka i Rozwój Regionalny, 22, 43–51. https://doi.org/10.22630/TIRR.2024.22.16
Vynnychuk, R. O. (2024). Shtuchnyi intelekt v kharchovii promyslovosti [Artificial intelligence in the food industry]. Hraal nauky, (43), 335–343. https://doi.org/10.36074/grail-of-science.06.09.2024.043
Hussain, M., Hashim, H., & Rahman, N. A. (2021). Application of artificial intelligence in the food industry: A guideline. Food Engineering Reviews, 13(4), 690–707. https://doi.org/10.1007/s12393-021-09263-7
Dyshkantiuk, Y., & Vlasiuk, K. (2023). Immersive technologies as a tool for innovation in restaurant business management. Entrepreneurship and Innovation, 29, 147–152. https://doi.org/10.32782/2415-3583/29.22
Hryhorieva, T., Rozenvasser, D., & Dyshkantiuk, Y. (2025). Informatsiini tekhnolohii v biznesi [Information technologies in business]. Ekonomika ta suspilstvo, (72), 1–8. https://doi.org/10.32782/2524-0072/2025-72-33
Napier, A., & Smith, B. (2021). AI in tourism and customer service. Tourism Technology Journal, 19(2), 45–67.
Ramirez-Asis, E., et al. (2022). Machine learning in food supply chain management: A review. Materials Today: Proceedings, 51, 2462–2465. https://doi.org/10.1016/j.matpr.2021.07.223
McKinsey & Company. (2023). AI trends in the hospitality industry. McKinsey Global Report. Retrieved from https://www.mckinsey.com/
Bouzembrak, Y., et al. (2023). AI-driven decision making in food technology. Food Science Advances, 23(1), 99–115.
Napier, A., & Smith, B. (2021). AI in restaurant management systems. Restaurant Technology Journal, 21(1), 101–115.
Berezina, K., Ciftci, O., & Cobanoglu, C. (2019). Robots, artificial intelligence, and service automation in restaurants. In S. Ivanov & C. Webster (Eds.), Robots, artificial intelligence, and service automation in travel, tourism and hospitality (pp. 185–219). Emerald Publishing. https://doi.org/10.1108/978-1-78756-687-320191010
Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods research. Journal of Mixed Methods Research, 1(2), 112–133. https://doi.org/10.1177/1558689806298224
Harrison, R. L., & Reilly, T. M. (2011). Mixed methods designs in marketing research. Qualitative Market Research: An International Journal, 14(1), 7–26. https://doi.org/10.1108/13522751111099300
Bryman, A. (2012). Social research methods (4th ed.). Oxford University Press.
Kvale, S. (1996). InterViews: An introduction to qualitative research interviewing. Sage Publications.
Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Sage Publications.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Copyright (c) 2025 Дмитро Харенко, Катерина Федосова, Тамара Новічкова

This work is licensed under a Creative Commons Attribution 4.0 International License.