MULTIDIMENSIONAL ANALYSIS OF THE SPATIAL STRUCTURE OF THE AGRICULTURAL SECTOR OF UKRAINIAN REGIONS: A DISCRIMINANT APPROACH
Abstract
This research presents a comprehensive analysis of the agricultural sector across Ukrainian regions, aiming to reveal regional disparities and patterns essential for informed policy-making and strategic development. Given the critical role of agriculture in Ukraine’s economy, understanding the agricultural performance of different regions is vital for optimizing policies and fostering regional growth. The research systematically classifies and evaluates agricultural indicators to uncover regional similarities and differences. A multi-step analytical approach was employed, consisting of Principal Component Analysis (PCA) to identify key indicators, Hierarchical Cluster Analysis (HCA) to group regions, and Discriminant Analysis (DA) to validate the clustering results. The study focused on six primary agricultural indicators: crop cultivation areas, agricultural product value per capita, grain production volume, average monthly agricultural wage, crop yield, and livestock live weight per capita. Based on the study's findings, three distinct clusters of regions were identified, each exhibiting unique characteristics in terms of agricultural sector development. The first cluster, comprising 12 regions is characterized by the lowest indicators of agricultural sector development. The second cluster, which includes five regions, is marked by an average level of development, with the highest average monthly agricultural wages. The third cluster, consisting seven regions, is distinguished by the highest agricultural development indicators. The analysis demonstrated excellent statistical validity, with a Wilks' Lambda value of 0.033, and a 100% accuracy rate in regional classification. Classification functions were developed to precisely categorize regions based on agricultural indicators. The research provides valuable insights for targeted agricultural policy development, regional development strategies, investment planning, and resource allocation. By establishing a data-driven framework for regional agricultural analysis, the study offers a useful tool for policymakers, agricultural experts, and regional development planners. The methodology and findings can guide future agricultural management practices and regional economic development efforts in Ukraine.
References
Liu Y., Jiang Z., Wang H. S. Spatial differentiation of agricultural regional function in Beijing and its influencing factors. Journal of Natural Resources. 2020. №35(10). Р. 2444-2459.
Andriushchenko K., Kovtun V., Shergina L., Rozhko O., Yefimenko L. Agro-based Clusters: A tool for effective management of regional development in the ERA of globalisation. TEM Journal. 2020. №9(1). Р. 198-204.
Shpak N., Kulyniak I., Gvozd M., Vveinhardt J., Horbal N. Formulation of development strategies for regional agricultural resource potential: The Ukrainian case. Resources. 2021. №10(6). Р. 57.
Зомчак Л. М., Умриш Г. Т. Моделювання залежності валового регіонального продукту від сільського господарства України на основі лонгітюдних даних. Економіка і суспільство. 2018. №16. С. 972-977.
Sumaryanti L., Widjastuti R., Tempola F., Ismanto H. Classification of agriculture area based on superior commodities in geographic information system. International Journal of Advanced Computer Science and Applications. 2022. №13(10). Р. 115-121.
Gera U. K., Siddarth D., Singh P. Smart farming: Industry 4.0 in agriculture using artificial intelligence. Artificial intelligence for societal development and global well-being. IGI Global. 2022. Р. 211-221.
Arrubla-Hoyos W., Ojeda-Beltrán A., Solano-Barliza A., Rambauth-Ibarra G., Barrios-Ulloa A., Cama-Pinto D., Manzano-Agugliaro F. Precision agriculture and sensor systems applications in Colombia through 5G networks. Sensors. 2022. № 22(19). Р. 7295.
Priyanka B. H. D. D., Udayaraju P., Koppireddy C. S., Neethika A. Developing a region-based energy-efficient IoT agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment. Measurement: Sensors. 2023. №27. Р. 100734.
Nehrey M., Zomchak L. Digital technology: emerging issue for agriculture. The International Conference on Artificial Intelligence and Logistics Engineering. Cham: Springer International Publishing. 2022. Р. 146-156.
Aghaalikhani F., Eini Zinab H., Sobhani R., Rezazadeh A. Comparing Energy and Nutrients of the usual household Food Baskets using Climatic Regions Classification, 2015-2018, and Household Incomes and Expenditure Data. Journal of nutrition sciences & food technology. 2023. №18(3 ). Р. 39-49.
Faye A., Dièye M., Diakhaté P. B., Bèye A., Sall M., Diop M. Senegal-Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security. Working Papers 308808, University of Bonn, Center for Development Research (ZEF). 2021
Kosfeld R., Mitze T. Research and development intensive clusters and regional competitiveness. Growth and Change. 2023. № 54(4). Р. 885-911.
Bal-Prylypko L., Nikolaenko M., Stepasyuk L., Cherednichenko O., Lialyk A. Forecasting the sale price of pork in agricultural enterprises. Agricultural and Resource Economics: International Scientific E-Journal. 2022. 8(4). 170-187.
Zomchak L., Nehrey M., Оliskevych М., Voronenko I., Rogoza N. Economic Growth and Environmental Degradation: Data Intelligence for Sustainable Environment. Journal of Information Technology Management. 2023. №15(1). Р. 163-177.
Вдовин М. Я., Зомчак Л., Боднар О. Кластеризація країн ЦСЄ за показниками ЗЕД. Економіка та суспільство. 2021. №26.
Вдовин М. Л., Любовецька Д. І. Таксономічний аналіз інвестиційної привабливості різних видів економічної діяльності України. Підприємництво і торгівля. 2023. №37. С. 5-11.
Dobrovolska O., Schmidtke K., Lastovchenko P., Odnoshevna O., Tkachenko O. Clustering countries of the world according to their business practices in agriculture. Problems and Perspectives in Management. 2024. №22(2). P.352-364.
Державна служба статистику України. URL: https://www.ukrstat.gov.ua/ (дата звернення 1.12.2024)
Liu, Y., Jiang, Z., & Wang, H. S. (2020). Spatial differentiation of agricultural regional function in Beijing and its influencing factors. Journal of Natural Resources, 35(10), 2444-2459.
Andriushchenko K., Kovtun V., Shergina L., Rozhko O., Yefimenko L. Agro-based Clusters: A tool for effective management of regional development in the ERA of globalisation. TEM Journal. 2020. №9(1). Р. 198-204.
Shpak N., Kulyniak I., Gvozd M., Vveinhardt J., Horbal N. Formulation of development strategies for regional agricultural resource potential: The Ukrainian case. Resources. 2021. №10(6). Р. 57
Zomchak, L. M., & Umrysh, H. T. (2018). Modelyuvannya zalezhnosti valovoho rehionalʹnoho produktu vid silʹsʹkoho hospodarstva Ukrayiny na osnovi lonhityudnykh danykh. Ekonomika i suspilʹstvo, 16, 972-977.
Sumaryanti, L., Widjastuti, R., Tempola, F., & Ismanto, H. (2022). Classification of agriculture area based on superior commodities in geographic information system. International Journal of Advanced Computer Science and Applications, 13(10), 115-121.
Gera, U. K., Siddarth, D., & Singh, P. (2022). Smart farming: Industry 4.0 in agriculture using artificial intelligence. In Artificial intelligence for societal development and global well-being (pp. 211-221). IGI Global.
Arrubla-Hoyos, W., Ojeda-Beltrán, A., Solano-Barliza, A., Rambauth-Ibarra, G., Barrios-Ulloa, A., Cama-Pinto, D., ... & Manzano-Agugliaro, F. (2022). Precision agriculture and sensor systems applications in Colombia through 5G networks. Sensors, 22(19), 7295.
Priyanka, B. H. D. D., Udayaraju, P., Koppireddy, C. S., & Neethika, A. (2023). Developing a region-based energy-efficient IoT agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment. Measurement: Sensors, 27, 100734.
Nehrey, M., & Zomchak, L. (2022, February). Digital technology: emerging issue for agriculture. In The International Conference on Artificial Intelligence and Logistics Engineering (pp. 146-156). Cham: Springer International Publishing.
Aghaalikhani, F., Eini Zinab, H., Sobhani, R., & Rezazadeh, A.. (2023). Comparing Energy and Nutrients of the usual household Food Baskets using Climatic Regions Classification, 2015-2018, and Household Incomes and Expenditure Data. Journal of nutrition sciences & food technology, 18(3 ), 39-49.
Faye, A., Dièye, M., Diakhaté, P. B., Bèye, A., Sall, M., & Diop, M. (2021). Senegal-Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security. Working Papers 308808, University of Bonn, Center for Development Research (ZEF).
Kosfeld, R., & Mitze, T. (2023). Research and development intensive clusters and regional competitiveness. Growth and Change, 54(4), 885-911.
Bal-Prylypko, L., Nikolaenko, M., Stepasyuk, L., Cherednichenko, O., & Lialyk, A. (2022). Forecasting the sale price of pork in agricultural enterprises. Agricultural and Resource Economics: International Scientific E-Journal, 8(4), 170-187.
Zomchak, L., Nehrey, M., Оliskevych, М., Voronenko, I., & Rogoza, N. (2023). Economic Growth and Environmental Degradation: Data Intelligence for Sustainable Environment. Journal of Information Technology Management, 15(1), 163-177.
Vdovyn, M. YA., Zomchak, L., & Bodnar, O. (2021). Klasteryzatsiya krayin TSSYE za pokaznykamy ZED. Ekonomika ta suspilʹstvo, (26).
Vdovyn, M. L., & Lyubovetsʹka, D. I. (2023). Taksonomichnyy analiz investytsiynoyi pryvablyvosti riznykh vydiv ekonomichnoyi diyalʹnosti Ukrayiny. Pidpryyemnytstvo i torhivlya, (37), 5-11.
Dobrovolska, O., Schmidtke, K., Lastovchenko, P., Odnoshevna, O., & Tkachenko, O. (2024). Clustering countries of the world according to their business practices in agriculture. Problems and Perspectives in Management, 22(2), 352-364.
State Statistic Service of Ukraine. URL: https://www.ukrstat.gov.ua/ (date of access 1.12.2024)
This work is licensed under a Creative Commons Attribution 4.0 International License.