LANGUAGE MODELS FOR AUTOMATING DOCUMENTATION AND SUPPORTING KNOWLEDGE MANAGEMENT IN REMOTE TEAMS IN IT-COMPANIES
Abstract
The article examines the potential of Large Language Models (LLMs) for automating technical documentation and supporting organizational knowledge management processes in IT projects, particularly those implemented within remote and distributed work environments. The growing complexity of modern software systems and the inherent challenges of collaboration across different time zones necessitate new approaches to standardize documentation practices and enhance internal communication efficiency. The relevance of this study lies in addressing the critical need for reliable mechanisms to capture, update, and retrieve expertise within decentralized teams, thus mitigating knowledge silos and reducing cognitive load on developers. The research employed a structured methodology, combining the method of systematic literature analysis to comprehensively review contemporary AI integration approaches in documentation workflows, the typological method to categorize and define distinct models of AI-assisted software engineering, and the modeling method to propose an implementable framework based on the Retrieval-Augmented Generation (RAG) architecture. The core findings highlight how AI technologies optimize the Software Development Life Cycle (SDLC), specifically by automating initial drafts, ensuring consistency between code and documentation, and assisting in the coordination among remote team members. Special attention is given to the RAG architecture as an efficient way to build internal, context-aware knowledge systems, allowing LLMs to access and synthesize information from an organization’s proprietary codebase and internal documentation. The proposed implementation model strategically positions LLMs not as a definitive replacement for human expertise but as a cognitive augmentation tool that handles repetitive, data-intensive tasks. This approach enables human technical writers and engineers to focus on strategic validation, contextual accuracy, and quality assurance of the generated content. Ultimately, the use of AI-driven language models is demonstrated to accelerate knowledge transfer, improve documentation quality and consistency, and enhance overall project transparency and collaborative productivity in the demanding context of remote IT management.
References
Куничак О. Українська ІТ-індустрія: робота в умовах війни та подальші перспективи. European Business Association. 2022. URL: https://eba.com.ua/ukrayinska-it-industriya-robota-v-umovah-vijny-ta-podalshi-perspektyvy/ (дата звернення 25.10.2025)
Makovoz O. & Buriak M. Agile Change Management of Ukraine’s IT Sector’s and Value Creation Amidst Conflict. London Journal of Social Sciences. 2024. Vol. 7, pp. 77-89. DOI: https://doi.org/10.31039/ljss.2024.7.189 (дата звернення 25.10.2025)
Триус Ю., Ткаченко Є. Особливості управління командою ІТ-проєкту в умовах віддаленої роботи. Управління розвитком складних систем. 2024. №60. С. 105-112. DOI: https://doi.org/10.32347/2412-9933.2024.60.105-112 (дата звернення 22.10.2025)
Diggs C. et al. Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation. 2024. DOI: 10.48550/arXiv.2411.14971 (дата звернення 21.10.2025)
Dvivedi S.S., Vijay V., Pujari S.L.R., Lodh S., & Kumar D. A Comparative Analysis of Large Language Models for Code Documentation Generation: 46th International Conference on Software Engineering; April 2024; Lisbon, Portugal. URL: https://arxiv.org/html/2312.10349v1 (дата звернення 23.10.2025)
Dhanuka D. Impact of LLMs on Team Collaboration in Software Development. 2025. DOI: 10.48550/arXiv.2510.08612 (дата звернення 21.10.2025)
Wang L. et al. Large Action Models: From Inception to Implementation. 2025. DOI: 10.48550/arXiv.2412.10047 (дата звернення 23.10.2025)
Rasheed Z. et al. Large Language Models for Code Generation: The Practitioners Perspective. 2025. DOI: 10.48550/arXiv.2501.16998 (дата звернення 21.10.2025)
Fan A. et al. Large Language Models for Software Engineering: Survey and Open Problems. 2023. DOI: 10.48550/arXiv.2310.03533 (дата звернення 23.10.2025)
Сеспедес Гарсія Н., Сеспедес Гарсія П. Моделі життєвого циклу розробки програмного забезпечення. Молодий вчений. 2023. №2 (114). С. 17-20. DOI: https://doi.org/10.32839/2304-5809/2023-2-114-4 (дата звернення 25.10.2025)
Lewis P. et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 2020. DOI: 10.48550/arXiv.2005.11401 (дата звернення 23.10.2025)
Kunychak O. (2022) Ukrainska IT-industriia: robota v umovakh viiny ta podalshi perspektyvy [Ukrainian IT industry: work in war conditions and further prospects]. European Business Association. Available at: https://eba.com.ua/ukrayinska-it-industriya-robota-v-umovah-vijny-ta-podalshi-perspektyvy/ (accessed October 25, 2025)
Makovoz O. & Buriak M. (2024) Agile Change Management of Ukraine’s IT Sector’s and Value Creation Amidst Conflict. London Journal of Social Sciences, vol. 7, pp. 77-89. Available at: https://doi.org/10.31039/ljss.2024.7.189 (accessed October 25, 2025)
Tryus Yu., Tkachenko Ye. (2024) Osoblyvosti upravlinnia komandoiu IT-proiektu v umovakh viddalenoi roboty [Features of team management in conditions of remote work]. Upravlinnia rozvytkom skladnykh system - Management of Development of Complex Systems, vol. 60, pp. 105-112. Available at: https://doi.org/10.32347/2412-9933.2024.60.105-112 (accessed October 22, 2025)
Diggs C. et al. (2024) Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation. Available at: 10.48550/arXiv.2411.14971 (accessed October 21, 2025)
Dvivedi S.S., Vijay V., Pujari S.L.R., Lodh S. & Kumar D. (2024) A Comparative Analysis of Large Language Models for Code Documentation Generation: 46th International Conference on Software Engineering; April 2024; Lisbon, Portugal. Available at: https://arxiv.org/html/2312.10349v1 (accessed October 23, 2025)
Dhanuka D. (2025) Impact of LLMs on Team Collaboration in Software Development. Available at: 10.48550/arXiv.2510.08612 (accessed October 21, 2025)
Wang L. et al. (2025) Large Action Models: From Inception to Implementation. Available at: 10.48550/arXiv.2412.10047 (accessed October 23, 2025)
Rasheed Z. et al. (2025) Large Language Models for Code Generation: The Practitioners Perspective. Available at: 10.48550/arXiv.2501.16998 (accessed October 21, 2025)
Fan A. et al. (2023) Large Language Models for Software Engineering: Survey and Open Problems. Available at: 10.48550/arXiv.2310.03533 (accessed October 23, 2025)
Sespedes Harsiia N., Sespedes Harsiia P. (2023) Modeli zhyttievoho tsyklu rozrobky prohramnoho zabezpechennia [Life cycle models of software development]. Molodyi vchenyi - Young Scientist, vol. 2(114), pp. 17-20. Available at: https://doi.org/10.32839/2304-5809/2023-2-114-4 (accessed October 25, 2025)
Lewis P. et al. (2020) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Available at: 10.48550/arXiv.2005.11401 (accessed October 23, 2025)

This work is licensed under a Creative Commons Attribution 4.0 International License.

