MODELLING THE STATE OF CLUSTER STRUCTURES USING QUEUING SYSTEM MODELS

Keywords: cluster structures, queuing systems, modeling, optimization, innovation, digital platforms, economic efficiency, resource management

Abstract

Modeling the state of cluster structures using queuing system models is a vital tool for analyzing their efficiency and forecasting development. Cluster structures, as dynamic systems, consist of enterprises, research institutions, government bodies, and other participants interacting within a shared economic space. Queuing system models enable consideration of the specific features of these interactions, including resource flows, innovation exchange, and information distribution. This article explores approaches to using such models to evaluate cluster workload, productivity, and identify bottlenecks that may limit their development. Special attention is given to analyzing parameters influencing the state of cluster structures, including the intensity of incoming requests, processing times, and interaction levels between participants. Queuing system methods allow the modeling of cluster development scenarios under various conditions, such as increased infrastructure load or growing competition. The article also examines the impact of innovative technologies, particularly digital platforms, on optimizing cluster operations and enhancing participant coordination. The proposed modeling approach provides deeper insights into the functioning of cluster structures, aiding in informed managerial decision-making. Practical application of the study's findings allows for process optimization within clusters, improving their efficiency and competitiveness. The use of queuing system models is a promising research direction in regional economics, as it facilitates the development of sustainable mechanisms for cluster growth in the dynamic conditions of modern markets.

References

Прокопець Н. А., Глоба Л. С. Математичне моделювання процесу обслуговування навантаження в інформаційно-комунікаційній мережі. Проблеми телекомунікацій. 2022. № 1 (30). С. 18–31.

Bai, W.H., Xi, J.Q., Zhu, J.X., Huang, S.W. (2015).Performance analysis of heterogeneous data centers in cloud computing using a complex queuing model. Mathematical Problems in Engineering, No. 2015. P. 1–15. DOI: https://doi.org/10.1155/2015/980945

Globa, L., Gvozdetska, N. (2021), "Experimental analysis of PCPB-2: Comprehensive energy-efficient approach to distributed workload processing in communication networks", Proceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), P. 1–3. DOI: https://doi.org/10.1109/BlackSeaCom52164.2021.9527759

Globa, L., Gvozdetska, N., Prokopets, V. (2021), "Providing Energy-efficient and High- performance Infrastructure for Smart Network", Proceedings of the 2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), P. 133–136. DOI: https://doi.org/10.1109/UkrMiCo52950.2021.9716620

Meisner, D., Wenisch, T.F. (2010), "Stochastic queuing simulation for data center workloads", Proceedings of the Exascale Evaluation and Research Techniques Workshop, No. 16, p. 1–9.

Van der Boor, M., Comte, C. (2021), "Load balancing in heterogeneous server clusters: Insights from a product-form queueing model", Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), P. 1–10. DOI: https://doi.org/10.1109/IWQOS52092.2021.9521355

Куцик П. О., Ковтун О. І. Застосування технологій штучного інтелекту в системі обгрунтування стратегічних рішень управління бізнесом. Вісник Львівського торговельно-економічного університету. Підприємництво і торгівля. 2024. № 42. С. 94–109. DOI: https://doi.org/10.32782/2522-1256-2024-42-13

Kutsyk P. O uso da engenharia econômica no contexto da gestão estratégica empresarial (Використання економічної інженерії в контексті стратегічного управління бізнесом) / Kutsyk P., Kovtun O., Klochan, V., Klochan I., Krakhmalova N., Prokopenko, O. // Laplage Em Revista, 2021, 7 (Extra-E), p. 427–436.

Prokopets N. A., Hloba L. S. (2022). Matematychne modelyuvannya protsesu obsluhovuvannya navantazhennya v informatsiyno-komunikatsiyniy merezhi. Problemy telekomunikatsiy. № 1 (30). S. 18–31.

Bai, W. H., Xi, J. Q., Zhu, J. X., Huang, S. W. (2015). Performance analysis of heterogeneous data centers in cloud computing using a complex queuing model. Mathematical Problems in Engineering, No. 2015, P. 1–15. DOI: https://doi.org/10.1155/2015/980945

Globa, L., Gvozdetska, N. (2021), "Experimental analysis of PCPB-2: Comprehensive energy-efficient approach to distributed workload processing in communication networks", Pro- ceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), P. 1–3. DOI: https://doi.org/10.1109/BlackSeaCom52164.2021.9527759

Globa, L., Gvozdetska, N., Prokopets, V. (2021), "Providing Energy-efficient and High- performance Infrastructure for Smart Network", Proceedings of the 2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), P. 133–136. DOI: https://doi.org/10.1109/UkrMiCo52950.2021.9716620

Meisner, D., Wenisch, T. F. (2010), "Stochastic queuing simulation for data center workloads", Proceedings of the Exascale Evaluation and Research Techniques Workshop, No. 16, p. 1–9.

Van der Boor, M., Comte, C. (2021), "Load balancing in heterogeneous server clusters: Insights from a product-form queueing model", Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), P. 1–10. DOI: https://doi.org/10.1109/IWQOS52092.2021.9521355

Kutsyk P. O., Kovtun О. І. Zastosuvannya tekhnolohiy shtuchnoho intelektu v systemi obhruntuvannya stratehichnykh rishen upravlinnya biznesom. Pidpryyemnytstvo i torhivlya. № 42, 2024, S. 94–109. DOI: https://doi.org/10.32782/2522-1256-2024-42-13

Kutsyk P. O uso da engenharia econômica no contexto da gestão estratégica empresarial (Using economic engineering in the context of strategic business management) / Kutsyk P., Kovtun O., Klochan, V., Klochan I., Krakhmalova N., Prokopenko, O. // Laplage Em Revista, 2021, 7 (Extra-E), p. 427–436.

Article views: 0
PDF Downloads: 0
Published
2025-03-31
How to Cite
Artemenko, A. (2025). MODELLING THE STATE OF CLUSTER STRUCTURES USING QUEUING SYSTEM MODELS. Economy and Society, (73). https://doi.org/10.32782/2524-0072/2025-73-46
Section
ECONOMICS