FUZZY HYBRID MODEL FOR FORMING A SYSTEM OF INDICATORS FOR ASSESSING THE EFFICIENCY OF AN ENTERPRISE

Keywords: strategic controlling, key performance indicators, balanced scorecard, fuzzy set theory, linguistic variables, term set, Fuzzy DEMATEL, Fuzzy AHP, Fuzzy SBWM

Abstract

The article is devoted to topical issues of the application of the concept of performance management in the strategic controlling of the enterprise, and in particular to the identification of key performance indicators (KPI). The main functions of systems for evaluating the performance of the company's activities, the actual methodological problems of their use, and the principles of the formation of performance indicators are analyzed. The article presents a hybrid model of the formation of a system of indicators for evaluating the performance of the enterprise using the tools of the fuzzy-multiple theory, which make it possible to take into account the vagueness of the information received from specialists and experts. The methodical approach developed on the basis of the model implements two tasks, namely the creation of a list of KPIs for each of the defined groups (by optimizing their number by excluding dependent and insignificant ones) and determining the priority of these indicators. To reduce the initial set of indicators formed for each group by experts, the Fuzzy DEMATEL method is used, in which a seven-level term set is used to determine the mutual influence and interdependence of KPIs, each term of which is represented by a fuzzy number in a triangular form and has a triangular shape of the membership function. In the event of a significant difference in expert evaluations, it is suggested to use the Fuzzy Delphi method to reconcile them. Fuzzy AHP and Fuzzy SBWM methods with a classic 9-level linguistic scale and a triangular shape of the membership function for the corresponding fuzzy numbers are used to determine the importance of performance indicators. For the purpose of practical application of the proposed algorithm, a framework has been developed that transforms the linguistic assessments of experts into fuzzy numbers, fully implements the calculation schemes of the hybrid model, and makes it possible to carry out simulation simulations depending on the adjustments of the experts' judgments. Approbation of the developed methodology for optimizing the performance indicator system of the banking institution according to the perspectives of the classical balanced scorecard (BSC): finance, customers, internal business processes and development and training was carried out. This technique can be used in the strategic controlling of the enterprise in order to facilitate the process of forming a system of key performance indicators and determining their priority.

References

Балан В.Г., Тимченко І.П. Компаративне оцінювання моделей збалансованого управління у стратегічному контролінгу. Матеріали Міжнародного економічного форуму EFBM «Економіка. Фінанси. Бізнес. Управління. Глобальні економічні виклики та можливості у цифрову епоху». 2019, м. Київ. С. 127–128.

Гордієнко І.В. Моделювання системи ключових показників ефективності діяльності організації. Економіка та підприємництво. 2011. № 25. С. 205–215.

Мартинова О.В. Основні принципи та положення моделювання оцінки діяльності підприємства з використанням збалансованої системи показників. Молодий вчений. 2018. № 11 (63). С. 1158–1165.

Фещур Р.В., Самуляк В.Ю. Групи показників (індикаторів) оцінювання рівня розвитку підприємств. Вісник Національного університету «Львівська політехніка». 2010. № 691. С. 231–239.

Amiri M., Hashemi-Tabatabaei M., Keshavarz-Ghorabaee M., Kaklauskas A., Zavadskas E.K., Antucheviciene J. A Fuzzy Extension of Simplified Best-Worst Method (F-SBWM) and Its Applications to Decision-Making Problems. Symmetry. 2023. Vol. 15(81). P. 1–30. https://doi.org/10.3390/sym15010081

APhD. 10 глобальних тенденцій бізнесу, які змінюють суть поняття менеджменту. URL: http://aphd.ua/10-hlobalnykh-tendentsii-biznesu-iaki-zminiuiut-sut-poniattia-menedzhmentu/ (дата звернення: 29.03.2023).

Buckley J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets and Systems. 1985. Vol. 17. P. 233–247.

Chang P.T., Huang L.C., Lin H.J. The fuzzy Delphi via fuzzy statistics and membership function fitting and an application to human resources. Fuzzy Sets and Systems. 2000. Vol. 112. P. 511–520.

Deng Q., Liu X., Liao H. Identifying Critical Factors in the Eco-Efficiency of Remanufacturing Based on the Fuzzy DEMATEL Method. Sustainability. 2015. Vol. 7(11). P. 15527–15547.

Fleisher C.S., Bensoussan В. Strategic and Competitive Analysis. Methods and Techniques for Analyzing Business Competition. ‎ Pearson College Div., 2002. 467 р.

Fritze A.-K., Schnupp C., Möller K. Strategy-based prioritisation of KPIs using the fuzzy analytic network process – An application in the context of shared services. Controlling : Zeitschrift für erfolgsorientierte Unternehmenssteuerung, 2017. Vol. 29(2). P. 58–68.

Globerson S. Issues in developing a performance criteria system for an organization. International Journal of Production Research. 1985. Vol. 23(4). P. 639–646.

Kaplan R.S. Measures for Manufacturing Excellence. Boston. Harvard Business School Press, 1990. 416 р.

Kaplan R.S., Norton D.P. The Balanced Scorecard: Translating Strategy Into Action. Harvard Business Press, 1996. 322 p.

Leekwijck W., Kerre E.E. Defuzzification: criteria and classification. Fuzzy Sets and Systems. 1999. Vol. 108(2). P. 159–178.

Meyer M.W. Rethinking Performance Measurement. Beyond the Balanced Scorecard. Cambridge University Press, 2002. 200 p.

Neely A., Adams C., Crowe P. The Performance Prism in Practice. Measuring Business Excellence. 2001. Vol. 5(2). P. 6–12.

Neely A., Platts K., Mills J., Richards H., Gregory M., Bourne M., Kennerley M. Performance measurement system design: developing and testing a process-based approach. International Journal of Operations & Production Management. 2000. Vol. 20(10). Р. 1119–1145.

Parmenter D. Key performance indicators. Developing, Implementing, and Using Winning KPIs. Second Edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 2010. 300 р.

Pérez C.Á., Montequín V.R., Fernández F.O., Balsera J.V. Integration of Balanced Scorecard (BSC), Strategy Map, and Fuzzy Analytic Hierarchy Process (FAHP) for a Sustainability Business Framework: A Case Study of a Spanish Software Factory in the Financial Sector. Sustainability. 2017. Vol. 9(527). Р. 1–23.

Rampersad H.K. Total Performance Scorecard: Redefining Management to Achieve Performance with Integrity (1st Edition). Butterworth-Heinemann, 2003. 332 p.

Seredynska I., Seredynska V., Fedorovych R. The use of key performance indicators in strategic management of an enterprise. Галицький економічний вісник. 2014. Vol. 47(4). P. 103–116.

Sofiyabadi J., Kolahi B., Valmohammadi C. Key performance indicators measurement in service business: a fuzzy VIKOR approach. Total Quality Management & Business Excellence. 2016. Vol. 27(9–10). P. 1028–1042. DOI: 10.1080/14783363.2015.1059272

Tomorrow’s Company: The Role of Business in a Changing World. Royal Society of Arts, Manufactures and Commerce. Interim Report, RSA, London, 1994. 39 p. URL: https://www.tomorrowscompany.com/wp-content/uploads/2016/05/RSA-Inquiry-Tomorrows-Company-1995.compressed.pdf (дата звернення: 29.03.2023)

Wu H.-Y., Tzeng G.-H., Chen Y.-H. A fuzzy MCDM approach for evaluating banking performance based on Balanced Scorecard. Expert Systems with Applications. 2009. Vol. 36. 10135–10147. doi:10.1016/j.eswa.2009.01.005

Zadeh L.A. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1978. Vol. 1(1). Р. 89–100 p.

Balan V.H., Tymchenko I.P. (2019) Komparatyvne otsiniuvannia modelej zbalansovanoho upravlinnia u stratehichnomu kontrolinhu [Comparative evaluation of balanced management models in strategic controlling]. Materialy Mizhnarodnoho ekonomichnoho forumu EFBM «Ekonomika. Finansy. Biznes. Upravlinnia. Hlobal'ni ekonomichni vyklyky ta mozhlyvosti u tsyfrovu epokhu», Kyiv, pp. 127–128.

Hordiienko I.V. (2011) Modeliuvannia systemy kliuchovykh pokaznykiv efektyvnosti diial'nosti orhanizatsii [Modeling of the system of key performance indicators of the organization]. Ekonomika ta pidpryiemnytstvo, no 25, pp. 205–215.

Martynova O.V. (2018) Osnovni pryntsypy ta polozhennia modeliuvannia otsinky diial'nosti pidpryiemstva z vykorystanniam zbalansovanoi systemy pokaznykiv [The main principles and provisions of modeling the assessment of enterprise activity using a balanced system of indicators]. Molodyj vchenyj, no 11 (63), pp. 1158–1165.

Feschur R.V., Samuliak V.Yu. (2010) Hrupy pokaznykiv (indykatoriv) otsiniuvannia rivnia rozvytku pidpryiemstv [Groups of indicators for assessing the level of development of enterprises]. Visnyk Natsional'noho universytetu «L'vivs'ka politekhnika», no 691, pp. 231–239.

Amiri M., Hashemi-Tabatabaei M., Keshavarz-Ghorabaee M., Kaklauskas A., Zavadskas E.K., Antucheviciene J. (2023) A Fuzzy Extension of Simplified Best-Worst Method (F-SBWM) and Its Applications to Decision-Making Problems. Symmetry, vol. 15(81), pp. 1–30. https://doi.org/10.3390/sym15010081

APhD. 10 hlobal'nykh tendentsij biznesu, iaki zminiuiut' sut' poniattia menedzhmentu [10 global business trends that change the essence of the concept of management]. Available at: http://aphd.ua/10-hlobalnykh-tendentsii-biznesu-iaki-zminiuiut-sut-poniattia-menedzhmentu/ (accessed March 29, 2023)

Buckley J.J. (1985) Fuzzy Hierarchical Analysis. Fuzzy Sets and Systems, vol. 17, pp. 233–247.

Chang P.T., Huang L.C., Lin H.J. (2000) The fuzzy Delphi via fuzzy statistics and membership function fitting and an application to human resources. Fuzzy Sets and Systems, vol. 112, pp. 511–520.

Deng Q., Liu X., Liao H. (2015) Identifying Critical Factors in the Eco-Efficiency of Remanufacturing Based on the Fuzzy DEMATEL Method. Sustainability, vol. 7(11), pp. 15527–15547.

Fleisher C.S., Bensoussan В. (2002) Strategic and Competitive Analysis. Methods and Techniques for Analyzing Business Competition. ‎ Pearson College Div., 467 р.

Fritze A.-K., Schnupp C., Möller K. (2017) Strategy-based prioritisation of KPIs using the fuzzy analytic network process – An application in the context of shared services. Controlling: Zeitschrift für erfolgsorientierte Unternehmenssteuerung, vol. 29(2), pp. 58–68.

Globerson S. (1985) Issues in developing a performance criteria system for an organization. International Journal of Production Research, vol. 23(4), pp. 639–646.

Kaplan R.S. (1990) Measures for Manufacturing Excellence. Boston, Harvard Business School Press, 416 р.

Kaplan R.S., Norton D.P. (1996) The Balanced Scorecard: Translating Strategy Into Action. Harvard Business Press, 322 p.

Leekwijck W., Kerre E.E. (1999) Defuzzification: criteria and classification. Fuzzy Sets and Systems, vol. 108(2), pp. 159–178.

Meyer M.W. (2002) Rethinking Performance Measurement. Beyond the Balanced Scorecard. Cambridge University Press, 200 p.

Neely A., Adams C., Crowe P. (2001) The Performance Prism in Practice. Measuring Business Excellence, vol. 5(2), pp. 6–12.

Neely A., Platts K., Mills J., Richards H., Gregory M., Bourne M., Kennerley M. (2000) Performance measurement system design: developing and testing a process-based approach. International Journal of Operations & Production Management, vol. 20(10), pp. 1119–1145.

Parmenter D. (2010) Key performance indicators. Developing, Implementing, and Using Winning KPIs. Second Edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 300 р.

Pérez C.Á., Montequín V.R., Fernández F.O., Balsera J.V. (2017) Integration of Balanced Scorecard (BSC), Strategy Map, and Fuzzy Analytic Hierarchy Process (FAHP) for a Sustainability Business Framework: A Case Study of a Spanish Software Factory in the Financial Sector. Sustainability, vol. 9(527), pp. 1–23.

Rampersad H.K. (2003) Total Performance Scorecard: Redefining Management to Achieve Performance with Integrity (1st Edition). Butterworth-Heinemann, 332 p.

Seredynska I., Seredynska V., Fedorovych R. (2014) The use of key performance indicators in strategic management of an enterprise. Halyts'kyj ekonomichnyj visnyk, vol. 47(4), pp. 103–116.

Sofiyabadi J., Kolahi B., Valmohammadi C. (2016) Key performance indicators measurement in service business: a fuzzy VIKOR approach. Total Quality Management & Business Excellence, vol. 27(9–10), pp. 1028–1042. doi: 10.1080/14783363.2015.1059272

Tomorrow’s Company: The Role of Business in a Changing World. Royal Society of Arts, Manufactures and Commerce. Interim Report, RSA, London, 1994. 39 p. Available at: https://www.tomorrowscompany.com/wp-content/uploads/2016/05/RSA-Inquiry-Tomorrows-Company-1995.compressed.pdf (accessed March 29, 2023)

Wu H.-Y., Tzeng G.-H., Chen Y.-H. (2009) A fuzzy MCDM approach for evaluating banking performance based on Balanced Scorecard. Expert Systems with Applications, vol. 36. pp. 10135–10147. doi:10.1016/j.eswa.2009.01.005

Zadeh L.A. (1978) Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, vol. 1(1), 89–100 p.

Article views: 158
PDF Downloads: 102
Published
2023-02-28
How to Cite
Balan, V. (2023). FUZZY HYBRID MODEL FOR FORMING A SYSTEM OF INDICATORS FOR ASSESSING THE EFFICIENCY OF AN ENTERPRISE. Economy and Society, (48). https://doi.org/10.32782/2524-0072/2023-48-70
Section
MANAGEMENT