ГЕОІНФОРМАЦІЙНИЙ АНАЛІЗ ЯК ІНСТРУМЕНТ СТРАТЕГІЧНОГО ПЛАНУВАННЯ ПРИРОДООРІЄНТОВАНИХ РІШЕНЬ ДЛЯ СТАЛОГО ЗЕМЛЕКОРИСТУВАННЯ
Анотація
У статті розглянуто вплив зміни клімату на урбанізовані території та зосереджено увагу на застосуванні природоорієнтованих рішень. Синьо-зелена інфраструктура (BGI), зокрема біосмуги, інфільтраційні траншеї й «зелені» автобусні зупинки, сприяє зменшенню поверхневого стоку й підвищенню водопроникності ґрунту. Виокремлено роль нахилу, типу ґрунту й землекористування як головних чинників ефективності BGI. Наголошено на важливості геоінформаційних систем і даних дистанційного зондування, що дають змогу комплексно аналізувати просторові показники, планувати NbS і відстежувати їхній вплив. Запропонований підхід який інтегрує концепції природоорієнтованих рішень та циркулярної економіки стимулює сталий розвиток землекористування, знижує ризики повеней і перегріву, а також сприяє збереженню міського біорізноманіття та покращення добробуту мешканців міста.
Посилання
IPCC. (2018). Global Warming of 1.5 °C. In An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press: Cambridge, UK; New York, NY, USA. Available at: http://surl.li/ziifam (accessed December 21, 2024)
United Nations. (2022). The Sustainable Development Goals Report 2022. Available at: https://unstats.un.org/sdgs/report/2022/ (accessed December 21, 2024)
United Nations. (2024). The Sustainable Development Goals Report 2024. Available at: https://unstats.un.org/sdgs/report/2024/ (accessed December 21, 2024)
IUCN. (2020). Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling Up of NbS, 1st ed.; IUCN: Gland, Switzerland.
Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. (2020). Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Systems, 2, 173–185.
Pineda-Martos, R.; Calheiros, C.S.C. (2021). Nature-based solutions in cities—Contribution of the Portuguese National Association of Green Roofs to urban circularity. Circular Economy and Sustainability, 1, 1019–1035.
Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimiou, S.; Mateo, M.C.G.; Calheiros, C.; Zluwa, I. et al. (2020). Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue-Green Systems, 2, 46–72.
Grimmond, C.S.B.; Roth, M.; Oke, T.R.; Au, Y.C.; Best, M.; Betts, R.; Carmichael, G.; Cleugh, H.; Dabberdt, W.; Emmanuel, R. et al. (2010). Climate and more sustainable cities: Climate information for improved planning and management of cities (Producers/Capabilities Perspective). Procedia Environmental Sciences, 1, 247–274.
Wagner, I.; Krauze, K.; Zalewski, M. (2013). Blue aspects of green infrastructure. Sustainable Development Applications, 4, 145–155.
Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U.D. (2019). Key factors influencing wider adoption of blue-green infrastructure in developing cities. Water, 11, 1234.
Pluto-Kossakowska, J.; Władyka, M.; Tulkowska, W. (2020). Wykorzystanie technologii GIS w analizie zielonej i błękitnej infrastruktury [Use of GIS technology in the analysis of green and blue infrastructure]. Roczniki Geomatyki [Annals of Geomatics], 18(1), 33–50. (in Polish)
O’Donnell, E.; Netusil, N.; Chan, F.; Dolman, N.; Gosling, S. (2021). International perceptions of urban blue-green infrastructure: A comparison across four cities. Water, 13, 544.
Zhou, C.; Wu, Y. (2020). A planning support tool for layout integral optimization of urban blue–green infrastructure. Sustainability, 12, 1613.
Sörensen, J.; Persson, A.S.; Olsson, J.A. (2021). A data management framework for strategic urban planning using blue-green infrastructure. Journal of Environmental Management, 299, 113658.
Kaur, R.; Gupta, K. (2022). Blue-green infrastructure (BGI) network in urban areas for sustainable storm water management: A geospatial approach. City and Environment Interactions, 16, 100087.
Thekkan, A.F.; George, A.; Prasad, P.R.C.; Joseph, S. (2022). Understanding blue-green infrastructure through spatial maps: Contribution of remote sensing and GIS technology. In Blue-Green Infrastructure across Asian Countries; Dhyani, S., Basu, M., Santhanam, H., Dasgupta, R., Eds.; Springer: Singapore.
Gobatti, L.; Bach, P.M.; Scheidegger, A.; Leitão, J.P. (2023). Using satellite imagery to investigate Blue-Green Infrastructure establishment time for urban cooling. Sustainable Cities and Society, 97, 104768.
Biłozor, A.; Cieślak, I.; Czyża, S.; Szuniewicz, K.; Bajerowski, T. (2024). Land-use change dynamics in areas subjected to direct urbanization pressure: A case study of the city of Olsztyn. Sustainability, 16, 2923.
Cebrián Abellán, F.; Andrés López, G.; Bellet Sanfeliu, C. (2023). The use of GIS and multicriteria techniques for the socio-spatial analysis of urban areas in medium-sized Spanish cities. Land, 12, 1115.
Ul Din, S.; Mak, H.W.L. (2021). Retrieval of land-use/land cover change (LUCC) maps and urban expansion dynamics of Hyderabad, Pakistan via Landsat datasets and support vector machine framework. Remote Sensing, 13, 3337.
Iwaszuk, E.; Rudik, G.; Duin, L.; Mederake, L.; Davis, M.; Naumann, S.; Wagner, I. (2019). Elementy błękitno-zielonej infrastruktury [Elements of blue-green infrastructure]. Błękitno-Zielona Infrastruktura dla Łagodzenia Zmian Klimatu—Katalog Techniczny [Blue-Green Infrastructure for Climate Change Mitigation—Technical Catalog]; Bergier, T., Kowalewska, A., Eds.; Ecologic Institute & Fundacja Sendzimira: Warsaw, Poland, pp. 5–44. (in Polish)
Morello, E.; Mahmoud, I.; Colaninno, N. (2019). Catalogue of nature-based solutions for urban regeneration. Energy & Urban Planning Workshop; Morello, E., Mahmoud, I., Eds.; School of Architecture Urban Planning Construction Engineering, Politecnico di Milano: Milan, Italy, pp. 33–89.
Our World in Data. (n.d.). Available at: https://sdg-tracker.org/ (accessed December 25, 2024)
Antoszewski, P.; Świerk, D.; Krzyżaniak, M. (2020). Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate (C) zone. International Journal of Environmental Research and Public Health, 17, 7093.
Müller, N.; Kuttler, W.; Barlag, A.B. (2014). Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115, 243–257.
Muthanna, T.M.; Sivertsen, E.; Kliewer, D.; Jotta, L. (2018). Coupling field observations and Geographical Information System (GIS)-based analysis for improved Sustainable Urban Drainage Systems (SUDS) performance. Sustainability, 10, 4683.
Gallagher, K.V.; Alsharif, K.; Tsegaye, S.; Van Beynen, P. (2018). A new approach for using GIS to link infiltration BMPs to groundwater pollution risk. Urban Water Journal, 15, 847–857.
Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. (2015). Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landscape and Urban Planning, 140, 29–41.
Tredway, J.C.; Havlick, D.G. (2017). Assessing the potential of low-impact development techniques on runoff and streamflow in the Templeton Gap Watershed, Colorado. The Professional Geographer, 69, 372–382.
Charlesworth, S.M.; Warwick, F. (2020). Sustainable drainage, green and blue infrastructure in urban areas. Sustainable Water Engineering; Charlesworth, S.M., Booth, C., Adeyeye, K., Eds.; Elsevier: Amsterdam, The Netherlands, pp. 185–206. ISBN 9780128161203.
Wang, X.; Shuster, W.; Pal, C.; Buchberger, S.; Bonta, J.; Avadhanula, K. (2010). Low impact development design—Integrating suitability analysis and site planning for reduction of post-development stormwater quantity. Sustainability, 2, 2467–2482.
Li, L.; Uyttenhove, P.; Vaneetvelde, V. (2020). Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landscape and Urban Planning, 194, 103703.
Senes, G.; Ferrario, P.S.; Cirone, G.; Fumagalli, N.; Frattini, P.; Sacchi, G.; Valè, G. (2021). Nature-based solutions for storm water management—Creation of a green infrastructure suitability map as a tool for land-use planning at the municipal level in the province of Monza-Brianza (Italy). Sustainability, 13(11), 6124.
Czyża, S.; Kowalczyk, A.M. (2024). Applying GIS in blue-green infrastructure design in urban areas for better life quality and climate resilience. Sustainability, 16(12), 5187.
IPCC. (2018). Global Warming of 1.5 °C. In An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press: Cambridge, UK; New York, NY, USA. Available at: http://surl.li/ziifam (accessed December 21, 2024)
United Nations. (2022). The Sustainable Development Goals Report 2022. Available at: https://unstats.un.org/sdgs/report/2022/ (accessed December 21, 2024)
United Nations. (2024). The Sustainable Development Goals Report 2024. Available at: https://unstats.un.org/sdgs/report/2024/ (accessed December 21, 2024)
IUCN. (2020). Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling Up of NbS, 1st ed.; IUCN: Gland, Switzerland.
Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. (2020). Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Systems, 2, 173–185.
Pineda-Martos, R.; Calheiros, C.S.C. (2021). Nature-based solutions in cities—Contribution of the Portuguese National Association of Green Roofs to urban circularity. Circular Economy and Sustainability, 1, 1019–1035.
Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimiou, S.; Mateo, M.C.G.; Calheiros, C.; Zluwa, I. et al. (2020). Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue-Green Systems, 2, 46–72.
Grimmond, C.S.B.; Roth, M.; Oke, T.R.; Au, Y.C.; Best, M.; Betts, R.; Carmichael, G.; Cleugh, H.; Dabberdt, W.; Emmanuel, R. et al. (2010). Climate and more sustainable cities: Climate information for improved planning and management of cities (Producers/Capabilities Perspective). Procedia Environmental Sciences, 1, 247–274.
Wagner, I.; Krauze, K.; Zalewski, M. (2013). Blue aspects of green infrastructure. Sustainable Development Applications, 4, 145–155.
Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U.D. (2019). Key factors influencing wider adoption of blue-green infrastructure in developing cities. Water, 11, 1234.
Pluto-Kossakowska, J.; Władyka, M.; Tulkowska, W. (2020). Wykorzystanie technologii GIS w analizie zielonej i błękitnej infrastruktury [Use of GIS technology in the analysis of green and blue infrastructure]. Roczniki Geomatyki [Annals of Geomatics], 18(1), 33–50. (in Polish)
O’Donnell, E.; Netusil, N.; Chan, F.; Dolman, N.; Gosling, S. (2021). International perceptions of urban blue-green infrastructure: A comparison across four cities. Water, 13, 544.
Zhou, C.; Wu, Y. (2020). A planning support tool for layout integral optimization of urban blue–green infrastructure. Sustainability, 12, 1613.
Sörensen, J.; Persson, A.S.; Olsson, J.A. (2021). A data management framework for strategic urban planning using blue-green infrastructure. Journal of Environmental Management, 299, 113658.
Kaur, R.; Gupta, K. (2022). Blue-green infrastructure (BGI) network in urban areas for sustainable storm water management: A geospatial approach. City and Environment Interactions, 16, 100087.
Thekkan, A.F.; George, A.; Prasad, P.R.C.; Joseph, S. (2022). Understanding blue-green infrastructure through spatial maps: Contribution of remote sensing and GIS technology. In Blue-Green Infrastructure across Asian Countries; Dhyani, S., Basu, M., Santhanam, H., Dasgupta, R., Eds.; Springer: Singapore.
Gobatti, L.; Bach, P.M.; Scheidegger, A.; Leitão, J.P. (2023). Using satellite imagery to investigate Blue-Green Infrastructure establishment time for urban cooling. Sustainable Cities and Society, 97, 104768.
Biłozor, A.; Cieślak, I.; Czyża, S.; Szuniewicz, K.; Bajerowski, T. (2024). Land-use change dynamics in areas subjected to direct urbanization pressure: A case study of the city of Olsztyn. Sustainability, 16, 2923.
Cebrián Abellán, F.; Andrés López, G.; Bellet Sanfeliu, C. (2023). The use of GIS and multicriteria techniques for the socio-spatial analysis of urban areas in medium-sized Spanish cities. Land, 12, 1115.
Ul Din, S.; Mak, H.W.L. (2021). Retrieval of land-use/land cover change (LUCC) maps and urban expansion dynamics of Hyderabad, Pakistan via Landsat datasets and support vector machine framework. Remote Sensing, 13, 3337.
Iwaszuk, E.; Rudik, G.; Duin, L.; Mederake, L.; Davis, M.; Naumann, S.; Wagner, I. (2019). Elementy błękitno-zielonej infrastruktury [Elements of blue-green infrastructure]. Błękitno-Zielona Infrastruktura dla Łagodzenia Zmian Klimatu—Katalog Techniczny [Blue-Green Infrastructure for Climate Change Mitigation—Technical Catalog]; Bergier, T., Kowalewska, A., Eds.; Ecologic Institute & Fundacja Sendzimira: Warsaw, Poland, pp. 5–44. (in Polish)
Morello, E.; Mahmoud, I.; Colaninno, N. (2019). Catalogue of nature-based solutions for urban regeneration. Energy & Urban Planning Workshop; Morello, E., Mahmoud, I., Eds.; School of Architecture Urban Planning Construction Engineering, Politecnico di Milano: Milan, Italy, pp. 33–89.
Our World in Data. (n.d.). Available at: https://sdg-tracker.org/ (accessed December 25, 2024)
Antoszewski, P.; Świerk, D.; Krzyżaniak, M. (2020). Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate (C) zone. International Journal of Environmental Research and Public Health, 17, 7093.
Müller, N.; Kuttler, W.; Barlag, A.B. (2014). Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115, 243–257.
Muthanna, T.M.; Sivertsen, E.; Kliewer, D.; Jotta, L. (2018). Coupling field observations and Geographical Information System (GIS)-based analysis for improved Sustainable Urban Drainage Systems (SUDS) performance. Sustainability, 10, 4683.
Gallagher, K.V.; Alsharif, K.; Tsegaye, S.; Van Beynen, P. (2018). A new approach for using GIS to link infiltration BMPs to groundwater pollution risk. Urban Water Journal, 15, 847–857.
Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. (2015). Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landscape and Urban Planning, 140, 29–41.
Tredway, J.C.; Havlick, D.G. (2017). Assessing the potential of low-impact development techniques on runoff and streamflow in the Templeton Gap Watershed, Colorado. The Professional Geographer, 69, 372–382.
Charlesworth, S.M.; Warwick, F. (2020). Sustainable drainage, green and blue infrastructure in urban areas. Sustainable Water Engineering; Charlesworth, S.M., Booth, C., Adeyeye, K., Eds.; Elsevier: Amsterdam, The Netherlands, pp. 185–206. ISBN 9780128161203.
Wang, X.; Shuster, W.; Pal, C.; Buchberger, S.; Bonta, J.; Avadhanula, K. (2010). Low impact development design—Integrating suitability analysis and site planning for reduction of post-development stormwater quantity. Sustainability, 2, 2467–2482.
Li, L.; Uyttenhove, P.; Vaneetvelde, V. (2020). Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landscape and Urban Planning, 194, 103703.
Senes, G.; Ferrario, P.S.; Cirone, G.; Fumagalli, N.; Frattini, P.; Sacchi, G.; Valè, G. (2021). Nature-based solutions for storm water management—Creation of a green infrastructure suitability map as a tool for land-use planning at the municipal level in the province of Monza-Brianza (Italy). Sustainability, 13(11), 6124.
Czyża, S.; Kowalczyk, A.M. (2024). Applying GIS in blue-green infrastructure design in urban areas for better life quality and climate resilience. Sustainability, 16(12), 5187.