METHODOLOGY FOR OPTIMIZING IDEAL CUSTOMER PROFILE CRITERIA TO ENHANCE THE SALES PERFORMANCE OF IT COMPANIES IN AN UNCERTAIN MARKET ENVIRONMENT

Keywords: B2B sales, sales activities, IT companies, customer selection criteria, market instability

Abstract

The research is dedicated to exploring the optimisation of Ideal Customer Profile (ICP) formation criteria as a tool for improving the sales performance of IT enterprises that operate under conditions of market instability and growing uncertainty. The study focuses on B2B IT companies that rely on outbound sales and remote interaction with clients and therefore need clear, data-driven rules for prioritising prospects at the pre-sale stage. Existing approaches to ICP formation are summarised and their limitations are highlighted, in particular the excessive reliance on basic firmographic and technographic attributes such as industry, company size, geography, business model and technology stack, which do not reflect the real stability or growth potential of a client. On the basis of analytical interpretation of open-source data on the IT market, an extended set of ICP criteria is proposed. In addition to traditional parameters, the profile includes indicators of reputation and history of cooperation with vendors, diversification of markets and revenue streams, hiring dynamics, product development intensity and investment activity, potential for scaling cooperation, maturity of internal processes and the level of public and professional activity of decision makers in digital networks, primarily LinkedIn. These indicators can be evaluated using publicly available information and interpreted as proxies for the risk level, resilience and strategic value of a client account. Systematic use of the optimised ICP allows IT companies to reduce the share of low-potential leads, allocate sales resources more rationally, shorten the pre-sale cycle and increase the predictability of revenue in an unstable business environment. The findings demonstrate that a revised set of ICP criteria can serve as a practical framework for reconfiguring sales playbooks, refining prospecting strategies and strengthening the competitive position of IT enterprises on international markets, especially for Ukrainian companies operating under economic and geopolitical pressure. The proposed approach can be integrated into existing CRM and analytics tools without significant additional cost, which increases its applicability for small and medium-sized IT vendors.

References

Хрупович С.Є., Дудар В.Т., Окрепкий Р.Б. Використання штучного інтелекту для моделювання портрету споживача в цифровому маркетингу. Галицький економічний вісник. 2022. № 1 (74). С. 163-170.

URL: http://elartu.tntu.edu.ua/handle/lib/38699 (дата звернення: 26.11.2025).

Портрет клієнта: як скласти та використовувати. URL: https://ukrainiandigital.com/portret-kliienta-iak-sklasty-ta-vykorystovuvaty (дата звернення 26.11.2025).

Sandip Mukhopadhyay, Srinivas Pingali, Amitabh Satyam Selling IT: The Science of Selling, Buying, and Deal-Making. Routledge India. 2021. P. 5-9.

+12% до кількості вакансій, Java наздогнала QA за відгуками. ІТ-ринок праці у ІІІ кварталі 2025. URL: https://dou.ua/lenta/articles/it-job-market-3-quarter-2025 (дата звернення 26.11.25).

The Framework for Ideal Customer Profile Development. URL: https://www.gartner.com/en/articles/the-framework-for-ideal-customer-profile-development (дата звернення 26.11.25)

BuiltWith Technology Lookup. URL: https://builtwith.com (дата звернення 26.11.25)

Фінансово-еккономічний словник : словник-довідник / кол. авт. : О. С. Юнін, О. О. Круглова, М. О. Савєльєва [та ін.]. – Дніпро : Біла К. О., 2018. – 164 с.

Сучасний менеджмент у схемах і таблицях. Частина 1 : навч. посібник / Н. С. Іванова, Н. С. Приймак, І. А. Карабаза, І. В. Шаповалова, Ю. Б. Лижник ; за ред. Н. С. Іванової. – Кривий Ріг : Вид-во ДонНУЕТ, 2021. – 282 с.

Khrupovych S.Ye., Dudar V.T., Okrepkyi R.B. (2022). Vykorystannia shtuchnoho intelektu dlia modeliuvannia portretu spozhyvacha v tsyfrovoho marketynhu [Use of artificial intelligence to model customer profile in digital marketing]. Halytskyi ekonomichnyi visnyk – Galician Economic Bulletin, No. 1(74), pp. 163–170. Available at: http://elartu.tntu.edu.ua/handle/lib/38699 (accessed November 26, 2025)

Portret kliienta: yak sklasty ta vykorystovuvaty [Customer profile: how to create and use it]. Available at: https://ukrainiandigital.com/portret-kliienta-iak-sklasty-ta-vykorystovuvaty (accessed November 26, 2025)

Sandip Mukhopadhyay, Srinivas Pingali, Amitabh Satyam (2021) Selling IT: The Science of Selling, Buying, and Deal-Making. Routledge India. pp. 5-9.

+12% do kilkosti vakansii, Java nazdohnala QA za vidhukamy. IT-rynok pratsi u III kvartali 2025 [+12% vacancies, Java catches up with QA in responses. IT labor market in Q3 2025]. DOU. Available at: https://dou.ua/lenta/articles/it-job-market-3-quarter-2025 (accessed November 26, 2025).

The Framework for Ideal Customer Profile Development. Gartner. Available at: https://www.gartner.com/en/articles/the-framework-for-ideal-customer-profile-development (accessed November 26, 2025).

BuiltWith Technology Lookup. Available at: https://builtwith.com (accessed November 26, 2025).

Yunin O.S., Kruhlova O.O., Savielieva M.O. et al. (2018). Finansovo-ekonomichnyi slovnyk: slovnyk-dovidnyk [Financial and Economic Dictionary: Reference Dictionary]. Dnipro: Bila K.O., 164 p.

Ivanova N.S., Pryimak N.S., Karabaza I.A., Shapovalova I.V., Lyzhnyk Yu.B. (2021). Suchasnyi menedzhment u skhemakh i tablytsiakh. Chastyna 1: navchalnyi posibnyk [Modern Management in Schemes and Tables. Part 1: Study Guide]. Kryvyi Rih: Vyd-vo DonNUET, 282 p.

Article views: 0
PDF Downloads: 0
Published
2025-11-24
How to Cite
Gnylianska, L., & Matolinets, I. (2025). METHODOLOGY FOR OPTIMIZING IDEAL CUSTOMER PROFILE CRITERIA TO ENHANCE THE SALES PERFORMANCE OF IT COMPANIES IN AN UNCERTAIN MARKET ENVIRONMENT. Economy and Society, (81). https://doi.org/10.32782/2524-0072/2025-81-46
Section
MANAGEMENT