PRACTICAL ASPECT OF THE METHODOLOGICAL APPROACH TO EVALUATING THE ORGANIZATION OF WORK OF STARTUP SPECIALISTS

Keywords: IT startups, methodological approach, integral indicator, partial indicators, significance coefficients, expert assessment, Harrington scale, additive convolution method

Abstract

This article presents the validation of a methodological approach for evaluating the organization of work among IT startup specialists operating in highly dynamic environments. These contexts are marked by the widespread use of remote and hybrid collaboration, the adoption of innovative practices, agile methodologies, and artificial intelligence technologies. Under conditions of limited resources, rapid scaling, and variable working conditions, there is a clear need for effective tools to manage team performance. In response to this need, a comprehensive assessment model is proposed, based on a multi-level system of indicators that integrates both quantitative and qualitative metrics. The approach includes normalization procedures, expert-based weighting, and the construction of an overall integral index. The methodology covers seven key domains: remote/hybrid work organization, adoption of novel methods, AI-driven productivity, innovation environment management, knowledge exchange quality, technological adaptability, and the strategic framing of remote work as a competitive advantage. To test the model, partial and integral indicators were calculated across each domain. Weight coefficients were derived from expert surveys, and normalization was applied to address dimensional inconsistencies. The additive aggregation method was then used to construct a composite performance index. The model was implemented using real-world data from an IT startup over the 2023–2024 period, revealing steady improvements in organizational effectiveness and an upward trend in the overall index. Practically, the method offers IT startup leaders a valuable analytical tool for balancing day-to-day management with long-term team development, early identification of organizational challenges, enhancing transparency, motivation, and performance through regular feedback and continuous improvement. The results also lay the foundation for future research on personalized evaluation models, integration with large language models (LLMs), and automation of strategic performance analysis in startup teams.

References

Гулякін Є. І., Витриховський Є. А. Організація роботи фахівців стартапу в сучасному бізнес-середовищі / Є. І. Гулякін, Є. А. Витриховський // Бізнес Інформ. – 2024. – №11. – С. 339–348. – Режим доступу: https://doi.org/10.32983/2222-4459-2024-11-339-348.

Doroshkevych D., Lytvynenko I. Investigation of the Level of Workplace Digitalization in the Terms of Remote Economic Growth / D. Doroshkevych, I. Lytvynenko // Економіка та суспільство. – 2023. – Вип. 47. – Режим доступу: https://doi.org/10.32782/2524-0072/2023-47-24.

Хаустов М. М. Стартапи: створення та масштабування: монографія / М. М. Хаустов. – Харків: ФОП Лібуркіна Л. М., 2023. – 224 с. – Режим доступу: https://ndc-ipr.org/media/publications/files/Mono_Startups.pdf.

Cunha B.Q., Donadelli F., et al. A Systematic Literature Review of Digital Startup Business Dynamics and Policy Interventions / B.Q. Cunha, F. Donadelli // Cogent Business & Management. – 2024. – Vol. 12, No. 1. – Режим доступу: https://doi.org/10.1080/23311975.2024.2440636.

Хаустов М. М. Розвиток наукових досліджень у сфері стартапів: бібліометричний і контент-аналіз / М. М. Хаустов // Проблеми економіки. – 2023. – №3. – С. 42–51. – Режим доступу: https://doi.org/10.32983/2222-0712-2023-3-42-51.

Mancebo V.O.C., Mucci D.M., dos Santos V. et al. Performance Management Systems in Startups: An Analysis of Stages of Development and Catalyst Factors / V.O.C. Mancebo, D.M. Mucci, V. dos Santos // International Journal of Productivity and Performance Management. – 2024. – Vol. 74, No. 1. – С. 358–386. – DOI: 10.1108/IJPPM-10-2023-0573.

Li Y., Zadehnoori I., Jowhar A. et al. Learning from Yesterday: Predicting Early-Stage Startup Success for Accelerators / Y. Li, I. Zadehnoori, A. Jowhar // Journal of Business Venturing Insights. – 2024. – Vol. 22. – e00490. – DOI: 10.1016/j.jbvi.2024.e00490.

Гришко Н. Є., та ін. Соціально-економічний вплив стартапів: міжнародний аспект / Н. Є. Гришко та ін. – 2021. – Режим доступу: https://repository.kpi.kharkov.ua/impact_startups.pdf.

Aulia M.F., Alamanda D.T., Zuhdi U. et al. Enhancing Startup Business Performance Through Iterative Strategies and Lean Programs / M.F. Aulia, D.T. Alamanda, U. Zuhdi // Australasian Accounting, Business and Finance Journal. – 2024. – Vol. 18, No. 4. – С. 165–183. – DOI: 10.14453/aabfj.v18i4.13.

Mohammadi Lanbaran N., Naujokaitis D., Kairaitis G. et al. Overview of Startups Developing Artificial Intelligence for the Energy Sector / N. Mohammadi Lanbaran, D. Naujokaitis, G. Kairaitis // Applied Sciences. – 2024. – Vol. 14, No. 18. – С. 8294. – DOI: 10.3390/app14188294.

Maarouf A., Feuerriegel S., Pröllochs N. A Fused Large Language Model for Predicting Startup Success / A. Maarouf, S. Feuerriegel, N. Pröllochs // arXiv preprint. – 2024. – arXiv:2409.03668. – Режим доступу: https://arxiv.org/abs/2409.03668.

Argaw Y.M., Liu Y. The Pathway to Startup Success: A Comprehensive Systematic Review of Critical Factors / Y.M. Argaw, Y. Liu // Systems. – 2024. – Vol. 12, No. 12. – С. 541. – DOI: 10.3390/systems12120541.

Kumar P., Dwivedi G. High-Tech Start-Ups’ Performance and Competitiveness: A Hybrid Systematic Literature Review and Future Agenda / P. Kumar, G. Dwivedi // International Journal of Global Business and Competitiveness. – 2025. – Vol. 12, No. 1. – С. 100–119. – DOI: 10.1007/s42943-025-00111-2.

Csaszar F.A., Ketkar H., Kim H. Artificial Intelligence and Strategic Decision-Making: Evidence from Entrepreneurs and Investors / F.A. Csaszar, H. Ketkar, H. Kim // Strategic Management Journal. – 2024. – Vol. 45, No. 9. – С. 1633–1669. – DOI: 10.1002/smj.3596.

Wang X., Ihlamur Y. An Automated Startup Evaluation Pipeline: Startup Success Forecasting Framework (SSFF) / X. Wang, Y. Ihlamur // arXiv preprint. – 2024. – arXiv:2405.19456. – Режим доступу: https://arxiv.org/abs/2405.19456.

Guliakin I. I., Vytrykhovskyi Ye. A. (2024). Orhanizatsiia roboty fakhivtsiv startapu v suchasnomu biznes-seredovyshchi [Organization of the work of startup specialists in the modern business environment]. Biznes Inform. No 11. P. 339–348. DOI: https://doi.org/10.32983/2222-4459-2024-11-339-348

Doroshkevych D., Lytvynenko I. (2023). Investigation of the Level of Workplace Digitalization in the Terms of Remote Economic Growth. Economy and Society. No 47. DOI: https://doi.org/10.32782/2524-0072/2023-47-24

Khaustov M. M. (2023). Startapy: stvorennia ta masshtabuvannia: monohrafiia [Startups: creation and scaling: monograph]. Kharkiv : FOP Liburkina L. M., 224 p. Available at: https://ndc-ipr.org/media/publications/files/Mono_Startups.pdf

Cunha B. Q., Donadelli F., et al. (2024). A Systematic Literature Review of Digital Startup Business Dynamics and Policy Interventions. Cogent Business & Management. Vol. 12, No. 1. DOI: https://doi.org/10.1080/23311975.2024.2440636

Khaustov M. M. (2023). Rozvytok naukovykh doslidzhen u sferi startapiv: bibliometrychnyi i kontent-analiz [Development of scientific research in the sphere of startups: the bibliometric and content analyses]. The Problems of Economy. No 3. P. 42–51. DOI: https://doi.org/10.32983/2222-0712-2023-3-42-51

Mancebo V.O.C., Mucci D.M., dos Santos V. et al. (2024). Performance Management Systems in Startups: An Analysis of Stages of Development and Catalyst Factors. International Journal of Productivity and Performance Management. Vol. 74, No. 1. P. 358–386. DOI: https://doi.org/10.1108/IJPPM-10-2023-0573

Li Y., Zadehnoori I., Jowhar A. et al. (2024). Learning from Yesterday: Predicting Early-Stage Startup Success for Accelerators. Journal of Business Venturing Insights. Vol. 22. e00490. DOI: https://doi.org/10.1016/j.jbvi.2024.e00490

Hryshko N. Ye. ta in. Sotsialno-ekonomichnyi vplyv startapiv: mizhnarodnyi aspekt [Socio-economic impact of startups: international aspect]. Available at: https://repository.kpi.kharkov.ua/impact_startups.pdf

Aulia M. F., Alamanda D. T., Zuhdi U. et al. (2024). Enhancing Startup Business Performance Through Iterative Strategies and Lean Programs. Australasian Accounting, Business and Finance Journal. Vol. 18, No. 4. P. 165–183. DOI: https://doi.org/10.14453/aabfj.v18i4.13

Mohammadi Lanbaran N., Naujokaitis D., Kairaitis G. et al. (2024). Overview of Startups Developing Artificial Intelligence for the Energy Sector. Applied Sciences. Vol. 14, No. 18. P. 8294. DOI: https://doi.org/10.3390/app14188294

Maarouf A., Feuerriegel S., Pröllochs N. (2024). A Fused Large Language Model for Predicting Startup Success. arXiv preprint. arXiv:2409.03668. Available at: https://arxiv.org/abs/2409.03668

Argaw Y.M., Liu Y. (2024). The Pathway to Startup Success: A Comprehensive Systematic Review of Critical Factors. Systems. Vol. 12, No. 12. P. 541. DOI: https://doi.org/10.3390/systems12120541

Kumar P., Dwivedi G. (2025). High-Tech Start-Ups’ Performance and Competitiveness: A Hybrid Systematic Literature Review and Future Agenda. International Journal of Global Business and Competitiveness. Vol. 12, No. 1. P. 100–119. DOI: https://doi.org/10.1007/s42943-025-00111-2

Csaszar F.A., Ketkar H., Kim H. (2024). Artificial Intelligence and Strategic Decision-Making: Evidence from Entrepreneurs and Investors. Strategic Management Journal. Vol. 45, No. 9. P. 1633–1669. DOI: https://doi.org/10.1002/smj.3596

Wang X., Ihlamur Y. (2024). An Automated Startup Evaluation Pipeline: Startup Success Forecasting Framework (SSFF). arXiv preprint. arXiv:2405.19456. Available at: https://arxiv.org/abs/2405.19456

Article views: 9
PDF Downloads: 7
Published
2025-04-28
How to Cite
Iastremska, O., & Guliakin, I. (2025). PRACTICAL ASPECT OF THE METHODOLOGICAL APPROACH TO EVALUATING THE ORGANIZATION OF WORK OF STARTUP SPECIALISTS. Economy and Society, (74). https://doi.org/10.32782/2524-0072/2025-74-102
Section
MANAGEMENT