IMPROVING RISK MANAGEMENT MODELS FOR THE DEVELOPMENT AND IMPLEMENTATION OF INNOVATIONS
Abstract
The growing of informational influence on economic agents and the increasing social tension worldwide impact the development and implementation of innovations. The purpose of this article is to improve existing innovation risk management models by obtaining a forecast of a specific target indicator, ensuring the objectivity of assessing the social, informational, and business environment. To account for the impact of social transformations on the processes of developing and implementing innovative project solutions, a system of four key indicators has been developed. The social catastrophe profile quantifies the characteristics of social shifts. The target audience profile reflects the behavioral patterns of stakeholders. The business environment profile integrates global and local economic indicators of economic entities. The information environment characterizes the intensity of disinformation spread. A classification of modern DSS is presented according to two fundamental criteria: the method of decision-making and the nature of interaction with the user during their operation. Artificial neural networks were used for the decision support system in innovation risk management. The combination of convolutional and recurrent neural networks was used as an architectural solution. A comparative analysis of their models was conducted based on three key criteria: execution time efficiency, forecasting accuracy, and training data economy with an accuracy threshold of 80%. The evaluation results, obtained using the linear additive aggregation method, confirmed the effectiveness of the proposed approach for parallelization and preprocessing of exogenous data. Both modified versions of the algorithms demonstrated high forecasting accuracy, however, the updated RCNN showed superior performance. The developed approach is practically significant as it allows for the effective forecasting of economic indicators in socially oriented, information-sensitive innovative projects during emergencies. This ensures timely crisis response and appropriate management strategy adjustments.
References
Brandon Summers-Miller Best IT Risk Management Software G2. 2024. URL: https://www.g2.com/categories/it-risk-management. (дата звернення: січень 08, 2025)
PBS. Stocks fall sharply after Federal Reserve signals fewer rate cuts than expected for 2025, 2024. URL: https://www.pbs.org/newshour/economy/stocks-fall-sharply-after-federal-reserve-signals-fewer-rate-cuts-than-expected-for-2025 (дата звернення: грудень 18, 2024).
Flaherty Flaherty, E., Sturm, T., & Farries, E. The conspiracy of Covid-19 and 5G: Spatial analysis fallacies in the age of data democratization. Social Science & Medicine, 2022. № 293, Article 114546. https://doi.org/10.1016/j.socscimed.2021.114546
Marcelo P. Conspiracy theories falsely tie Maui wildfires to ‘smart cities’ and tech conferences AP News, 2023. URL: https://apnews.com/article/fact-check-maui-hawaii-wildfires-smart-cities-387327837046. (дата звернення: серпень 16, 2023)
Березіна С.Б. Соціальні ризики: чинники та напрями мінімізації: дис. ... д-ра екон. наук: 08.00.07. Київ, 2019. 441 с.
Vlasenko R., Yatsenko L. Social risks: factors and consequences. Strategic Panorama. 2023. № 1. P. 37–46. DOI: 10.53679/2616-9460.1.2023.04.
Гавриш О.А., Солнцев С.О., Роїк Т.А., Гавриш Ю.О. Вплив COVID-19 на бізнес Наукові записки Львівського університету бізнесу та права. Серія економічна. Серія юридична. 2022. Вип. 32. С. 4-10.
Шейко І., Стороженко О. Можливості та ризики економічного розвитку в постпандемічний період для України та східноєвропейських країн // Економіка та суспільство. 2021. № 25. DOI: 10.32782/2524-0072/2021-25-83.
Гуржій Н.М., Назарова С.О., Василина О.Р. Цифрова економіка та її вплив на зміну споживчих звичок і ринкових стратегій: цифрові трансформації та інституційний контекст. Академічні візії. Серія Економіка. 2024. Вип. 30. DOI: 10.5281/zenodo.10980333.
Липов В.В. Суперечності віртуальної конкуренції як результат алгоритмізації управління на цифрових платформах: інституційний контекст Економічна теорія. 2022. № 1. С. 26–44. DOI: 10.15407/etet2022.01.026 (дата звернення: 25.03.2024).
Khovrat A., Teslenko D., Huliiev N., Kyriy V. Теоретико-експериментальне дослідження ірраціонального складника економічної поведінки українського суспільства на специфічних ринках Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 2(24). С. 221–229. DOI: 10.30837/ITSSI.2023.24.221.
Kaikova O., Terziyan V., Tiihonen T., Golovianko M., Gryshko S., Titova L. Hybrid Threats against Industry 4.0: Adversarial Training of Resilience E3S Web of Conferences. 2022. Vol. 353. EDP Sciences. DOI: 10.1051/e3sconf/202235303004.
Gutsa, O., Yelchaninov, D., Merkulova, T., Kyriy, V., Ihumentseva, N., Dovgopol, N., Zabuga, S., Petrova, A., Peresada, O., & Kutsak, V. Design of Verbal Models for Forming an Optimal Strategy for Sustainable Development of Service Enterprises in the Conditions of a Crisis . Science and Innovation, 2022. 18(3), 58–73. https://doi.org/10.15407/scine18.03.058
Butt U.A., Amin R., Mehmood M., Aldabbas H., Alharbi M.T., Albaqami N. Cloud Security Threats and Solutions: A Survey Wireless Personal Communications. 2022. Vol. 128. P. 387–413. DOI: 10.1007/s11277-022-09960-z.
Deng R., Duzhin F. Topological Data Analysis Helps to Improve Accuracy of Deep Learning Models for Fake News Detection Trained on Very Small Training Sets Big Data and Cognitive Computing. 2022. Vol. 6. No. 3. P. 74. DOI: 10.3390/bdcc6030074.
Yakovlev S., Khovrat A., Kobziev V. Using Parallelized Neural Networks to Detect Falsified Audio Information in Socially Oriented Systems Proceedings of the International Scientific Conference "Information Technology and Implementation". IT&I ’23, 2023 Kyiv, Ukraine. P. 220–238. URL: https://ceur-ws.org/Vol-3624/Paper_19.pdf.
Xia T., Chen X. Granger Causality: A Review and Recent Advances Annual Review of Statistics and Its Application. 2022. Vol. 9. P. 289–319. DOI: 10.1146/annurev-statistics-040120-010930.
Khovrat A., Kobziev V. Using Recurrent and Convolutional Neural Networks to Identify Fake Audio Messages Proceedings of the International Conference on Methods and Systems of Navigation and Motion Control. 2023. MSNMC ’23, IEEE, Kyiv, Ukraine. P. 174–177. DOI: 10.1109/MSNMC61017.2023.10329236.
G2. Best IT Risk Management Software, 2024. URL: https://www.g2.com/categories/it-risk-management. (accessed January 08, 2025)
PBS. Stocks fall sharply after Federal Reserve signals fewer rate cuts than expected for 2025, 2024. URL: https://www.pbs.org/newshour/economy/stocks-fall-sharply-after-federal-reserve-signals-fewer-rate-cuts-than-expected-for-2025. (accessed Dec18, 2024)
Flaherty, E., Sturm, T., & Farries, E. (2022). The conspiracy of Covid-19 and 5G: Spatial analysis fallacies in the age of data democratization. Social Science & Medicine, 293, Article 114546. https://doi.org/10.1016/j.socscimed.2021.114546
Marcelo P. (2023) Conspiracy theories falsely tie Maui wildfires to ‘smart cities’ and tech conferences AP News. URL: https://apnews.com/article/fact-check-maui-hawaii-wildfires-smart-cities-387327837046. (accessed: August 18, 2023)
Berezina S.B. (2019) Sotsialni ryzyky: chynnyky ta napriamy minimizatsii [Social risks: factors and ways to minimize them]: dys. ... d-ra ekon. nauk : 08.00.07. Kyiv, 441 р.
Vlasenko R., Yatsenko L. (2023) Social risks: factors and consequences // Strategic Panorama. рр. 37–46. DOI: 10.53679/2616-9460.1.2023.04.
Havrysh O.A., Solntsev S.O., Roik T.A., Havrysh Yu.O. Vplyv COVID-19 na biznes (2022) Naukovi zapysky Lvivskoho universytetu biznesu ta prava. Seriia ekonomichna. Seriia yurydychna. Vyp. 32. Р. 4-10.
Vlasenko, R., & Yatsenko, L. (2023). SOCIAL RISKS: FACTORS AND CONSEQUENCES. Strategic Panorama, (1), 37-46. https://doi.org/10.53679/2616-9460.1.2023.04.
Hurzhii N.M., Nazarova S.O., Vasylyna O.R. (2024) Tsyfrova ekonomika ta yii vplyv na zminu spozhyvchykh zvychok i rynkovykh stratehii: tsyfrovi transformatsii ta instytutsiinyi kontekst. [The digital economy and its impact on changing consumer habits and market strategies: digital transformations and institutional context] Akademichni vizii. Seriia Ekonomika. Vyp. 30. DOI: 10.5281/zenodo.10980333.
Lypov V.V. (2022) Superechnosti virtualnoi konkurentsii yak rezultat alhorytmizatsii upravlinnia na tsyfrovykh platformakh: instytutsiinyi kontekst [Contradictions of virtual competition as a result of algorithmization of management on digital platforms: institutional context] Ekonomichna teoriia. № 1. P. 26–44. DOI: 10.15407/etet2022.01.026 (accessed: Mart 25 2024).
Khovrat A., Teslenko D., Huliiev N., Kyriy V. (2023) Teoretyko-eksperymentalne doslidzhennia irratsionalnoho skladnyka ekonomichnoi povedinky ukrainskoho suspilstva na spetsyfichnykh rynkakh [Theoretical and experimental study of the irrational component of the economic behavior of Ukrainian society in specific markets] Suchasnyi stan naukovykh doslidzhen ta tekhnolohii v promyslovosti. № 2(24). С. 221–229. DOI: 10.30837/ITSSI.2023.24.221.
Kaikova O., Terziyan V., Tiihonen T., Golovianko M., Gryshko S., Titova L. (2022) Hybrid Threats against Industry 4.0: Adversarial Training of Resilience E3S Web of Conferences. Vol. 353. EDP Sciences. DOI: 10.1051/e3sconf/202235303004.
Gutsa, O., Yelchaninov, D., Merkulova, T., Kyriy, V., Ihumentseva, N., Dovgopol, N., Zabuga, S., Petrova, A., Peresada, O., & Kutsak, V. (2022). Design of Verbal Models for Forming an Optimal Strategy for Sustainable Development of Service Enterprises in the Conditions of a Crisis . Science and Innovation, 18(3), 58–73. https://doi.org/10.15407/scine18.03.058.
Butt U.A., Amin R., Mehmood M., Aldabbas H., Alharbi M.T., Albaqami N. (2022) Cloud Security Threats and Solutions: A Survey Wireless Personal Communications. 2022. Vol. 128. P. 387–413. DOI: 10.1007/s11277-022-09960-z.
Deng R., Duzhin F. (2022) Topological Data Analysis Helps to Improve Accuracy of Deep Learning Models for Fake News Detection Trained on Very Small Training Sets // Big Data and Cognitive Computing. Vol. 6. No. 3. P. 74. DOI: 10.3390/bdcc6030074.
Yakovlev S., Khovrat A., Kobziev V. (2023) Using Parallelized Neural Networks to Detect Falsified Audio Information in Socially Oriented Systems // Proceedings of the International Scientific Conference "Information Technology and Implementation". IT&I ’23, Kyiv, Ukraine. P. 220–238. URL: https://ceur-ws.org/Vol-3624/Paper_19.pdf.
Xia T., Chen X. (2022) Granger Causality: A Review and Recent Advances Annual Review of Statistics and Its Application. Vol. 9. P. 289–319. DOI: 10.1146/annurev-statistics-040120-010930.
Khovrat A., Kobziev V. (2023) Using Recurrent and Convolutional Neural Networks to Identify Fake Audio Messages Proceedings of the International Conference on Methods and Systems of Navigation and Motion Control. MSNMC ’23, IEEE, Kyiv, Ukraine. P. 174–177. DOI: 10.1109/MSNMC61017.2023.10329236.

This work is licensed under a Creative Commons Attribution 4.0 International License.