ANALYSIS OF THE WEEKLY CLOSING PRICE OF BITCOIN: INFLUENCING FACTORS AND TRADER'S FORECASTS
Abstract
The study focuses on the degree of correlation between the MACD histogram and the closing price of bitcoin on a weekly timeframe, which is an important factor in the formation of traders' forecasts within the framework of technical analysis. The main objectives of the study were to find out whether the minimum price of bitcoin increased or decreased compared to the previous week with similar changes in the MACD, as well as to determine the average and maximum series for the weekly closing price. The study found that in 54.45% of cases, a trader can expect the closing price of bitcoin to increase this week if the MACD histogram showed an increase in the previous week; or to decrease this week if the MACD histogram showed a decrease in the previous week. A trader can expect the closing price of bitcoin to continue its direction of movement in the second week 48.02% of the time. A trader can expect the closing price movement in one direction to end after the 4th week 95.48% of the time.
References
Hur’yanova L.S., Lutsenko R.R. (2024). Modeli analizu dynamiky rynku kryptovalyut z urakhuvannyam povedinkovykh metryk steykkholderiv za danymy sotsialʹnykh merezh. Models for analyzing the dynamics of the cryptocurrency market taking into account the behavioral metrics of stakeholders according to social network data. Biznes inform, no. 9, pp. 129-138. DOI: https://doi.org/10.32983/2222-4459-2024-9-129-138 (in Ukrainian).
Pylypchenko O., Kuzminsky V., Chumachenko O. (2021). Vykorystannya metodiv tekhnichnoho analizu dlya prohnozuvannya rynku krypto valyut Using technical analysis methods to forecast the cryptocurrency market. Scientific notes of the KROK University, no. 4(64), pp. 28-35. DOI: https://doi.org/10.31732/2663-2209-2021-64-28-35 (in Ukrainian).
Pupov N. A., Zavhorodnya H. A. (2024). Vykorystannya metodu liniynoyi rehresiyi dlya prohnozuvannya kursu krypto valyuty Using the linear regression method to predict the exchange rate of crypto currencies. ITSynergy, no.1, pp. 62–73. DOI: https://doi.org/10.53920/ITS-2024-1-5 (in Ukrainian).
Al-Nefaie AH, Aldhyani THH. (2022). Bitcoin price forecasting and trading: data analytics approaches. Electronics, no. 11(24). DOI: https://doi.org/10.3390/electronics11244088
Appel G. Technical analysis: power tools for the active investors. 2005. 241 р.
Bâra A., Oprea S.V. (2024). An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend. Engineering Applications of Artificial Intelligence, no. 133. DOI: https://doi.org/10.1016/j.engappai.2024.107991
Chen K.S. and Yang J.J. (2024). Price dynamics and volatility jumps in bitcoin options. Financial Innovation, no.10. DOI: https://doi.org/10.1186/s40854-024-00653-z
Ignatenko A., Dokiienko L. (2025). Practical use of the maximum price of bitcoin dynamics and the MACD histogram to formulate trader's forecasts. Investments: practice and experience, no.1, pр. 120-126. DOI: https://doi.org/10.32702/2306-6814.2025.1.120
Ignatenko A., Dokiienko L. (2025). Generating trader forecasts based on the dynamics of the minimum bitcoin price and the MACD histogram. International Scientific Journal "Internauka". Series: "Economic Sciences", no.1. DOI: https://doi.org/10.25313/2520-2294-2025-1-10610
Maleki N., Nikoubin A., Rabbani M., Zeinali Y. (2023). Bitcoin price prediction based on other cryptocurrencies using machine learning and time series analysis. Scientia Iranica, no. 30(1), pp.285-301. DOI: https://doi.org/10.24200/sci.2020.55034.4040
Rudd M., Porter D. (2024). Forecasting Bitcoin price trajectories using a supply and demand framework. Available at: https://ssrn.com/abstract=5059523
Samizadeh I. (2024). Enhanced forecasting of bitcoin price dynamics using empirical evaluation of the time series forecasting model with integrated technical indicators and market repressor’s. DOI: https://doi.org/10.13140/RG.2.2.10560.34566
Shahzad A., Anwar Y., Nadeem M., Shair W. (2024). Cryptocurrency price dynamics: unveiling Bitcoin’s predictors. Journal of Policy Research, no. 10(3), pр. 459-469. DOI: https://doi.org/10.61506/02.00364.
Uras N, Marchesi L, Marchesi M, Tonelli R. (2020). Forecasting Bitcoin closing price series using linear regression and neural networks models. PeerJ Computer Science. DOI: https://doi.org/10.7717/peerj-cs.279
Zeba A., Jinan F., Ahmer S., Mahpar A. (2020). Bitcoin Price Prediction using ARIMA Model. DOI: https://doi.org/10.36227/techrxiv.12098067
MACD Bitcoin data: weekly prices and histogram from 2018 to 2024. Available at: https://math-bitcoin-predictions.com/research/macd-bitcoin/
Гур’янова Л.С., Луценко Р.Р. Моделі аналізу динаміки ринку криптовалют з урахуванням поведінкових метрик стейкхолдерів за даними соціальних мереж. Бізнес інформ. 2024. №9. С.129-138 DOI: https://doi.org/10.32983/2222-4459-2024-9-129-138
Пилипченко О., Кузьмінський В., Чумаченко О. Використання методів технічного аналізу для прогнозування ринку крипто валют. Вчені записки Університету «КРОК». 2021. №4(64). С.28-35. DOI: https://doi.org/10.31732/2663-2209-2021-64-28-35
Пупов, Н. А., Завгородня Г. А. Використання методу лінійної регресії для прогнозування курсу крипто валюти. ITSynergy. 2024. №1. С.62–73. DOI: https://doi.org/10.53920/ITS-2024-1-5
Al-Nefaie AH, Aldhyani THH. Bitcoin price forecasting and trading: data analytics approaches. Electronics. 2022. №11(24). DOI: https://doi.org/10.3390/electronics11244088
Appel G. Technical analysis: power tools for the active investors. 2005. 241 р.
Bâra A., Oprea S.V. An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend. Engineering Applications of Artificial Intelligence. 2024. №133 (А). DOI: https://doi.org/10.1016/j.engappai.2024.107991
Chen K.S., Yang J.J. Price dynamics and volatility jumps in bitcoin options. Financial Innovation. 2024. №10. Р.132. DOI: https://doi.org/10.1186/s40854-024-00653-z
Ignatenko A., Dokiienko L. Practical use of the maximum price of bitcoin dynamics and the MACD histogram to formulate trader's forecasts. Інвестиції: практика та досвід. 2025. №1. С.120-126. DOI: https://doi.org/10.32702/2306-6814.2025.1.120
Ignatenko A., Dokiienko L. Generating trader forecasts based on the dynamics of the minimum bitcoin price and the MACD histogram. International Scientific Journal "Internauka". Series: "Economic Sciences". 2025. №1. DOI: https://doi.org/10.25313/2520-2294-2025-1-10610
Maleki N., Nikoubin A., Rabbani M., Zeinali Y. Bitcoin price prediction based on other cryptocurrencies using machine learning and time series analysis. Scientia Iranica. 2023. №30(1). Р.285-301. DOI: https://doi.org/10.24200/sci.2020.55034.4040
Rudd M., Porter D. Forecasting Bitcoin price trajectories using a supply and demand framework. 2024. URL: https://ssrn.com/abstract=5059523
Samizadeh I. Enhanced forecasting of bitcoin price dynamics using empirical evaluation of the time series forecasting model with integrated technical indicators and market repressor’s. 2024. DOI: https://doi.org/10.13140/RG.2.2.10560.34566
Shahzad A., Anwar Y., Nadeem M., Shair W. Cryptocurrency price dynamics: unveiling Bitcoin’s predictors. Journal of Policy Research. 2024. №10(3). Р.459–469. DOI: https://doi.org/10.61506/02.00364
Uras N, Marchesi L, Marchesi M, Tonelli R. Forecasting Bitcoin closing price series using linear regression and neural networks models. PeerJ Computer Science. 2020. DOI: https://doi.org/10.7717/peerj-cs.279
Zeba A., Jinan F., Ahmer S., Mahpar A. Bitcoin Price Prediction using ARIMA Model. DOI: https://doi.org/10.36227/techrxiv.12098067.v1.
MACD Bitcoin data: weekly prices and histogram from 2018 to 2024. URL: https://math-bitcoin-predictions.com/research/macd-bitcoin/

This work is licensed under a Creative Commons Attribution 4.0 International License.