APPLICATION OF ARTIFICIAL INTELLIGENCE TOOLS TO IMPROVE SALES FORECASTING ACCURACY IN DIGITAL ENTREPRENEURSHIP
Abstract
The article examines the implementation of artificial intelligence tools for sales forecasting in digital entrepreneurship, focusing on enhancing the accuracy and efficiency of forecasting processes. The research is particularly relevant due to the growing complexity of data analysis in the digital economy and the need for more sophisticated forecasting approaches. The study aims to demonstrate the practical application of AI-based sales forecasting methods in enterprises and to analyze their effectiveness in improving business decision-making processes. The methodology of the research combines theoretical analysis of existing AI forecasting approaches with a practical case study of implementing an automated forecasting system at PJSC «New Style». The study employs machine learning algorithms for data processing and analysis, utilizing both internal enterprise data. The investigation reveals significant improvements in forecasting accuracy and efficiency following the implementation of AI-based tools. The automated system demonstrated a 7% increase in accuracy for product selection planning and a 13% improvement in customer-product pair forecasting. The system also showed a 10% reduction in mean absolute error across markets. Notable results include the complete automation of the forecasting process, reducing manual labor requirements and enabling overnight processing of predictions within 6-12 hours. The system demonstrated remarkable adaptability during crisis periods, successfully recovering its forecasting accuracy within 5-6 months after operational disruptions due to military actions. However, the research also identified limitations in the current implementation, including restricted analysis of external factors, slow adaptation to market changes, and simplified customer segmentation. The practical value of the research lies in its detailed analysis of AI implementation challenges and successes in a real business environment. The findings provide valuable insights for enterprises planning to implement AI-based forecasting systems, offering both technical and strategic recommendations for system deployment. The study contributes to the understanding of AI application in business forecasting and presents a framework for future improvements in automated prediction systems. The research results can be particularly valuable for digital enterprises seeking to enhance their forecasting capabilities and optimize their business processes through AI implementation.
References
Annor-Antwi A., Al-Dherasi A. A. M. Application of artificial antelligence in forecasting: A systematic review. Zhejiang University of Science and Technology. 2019. DOI: https://dx.doi.org/10.2139/ssrn.3483313 (дата звернення: 28.10.2024).
Нестеров В. Ф., Шиш А. М., Музиченко Т. О. Ефективний економічний розвиток підприємства через інтелектуальний аналіз даних: використання AI для прогнозування та оптимізації стратегій бізнесу. Економіка та суспільство. 2024. № 59. С. 182–187.
Фаріон В., Гомотюк А., Назар Р., Турчин С. Використання штучного інтелекту для прогнозування фінансових показників. Економічний аналіз. 2024. Том 34. № 2. С. 327-337.
Hasan M. R. Addressing seasonality and trend detection in predictive sales forecasting: A machine learning perspective. Journal of Business and Management Studies. 2024. № 6(2). P. 100-109.
Lodha S., Deshmukh S., Chitnis S., Patil A., Patil A. An approach to make customer segmentation and sales prediction using artificial intelligence model. Shodhak: A Journal of Historical Research. 2023. Vol. 53. No 3(5). P. 148-156.
Gupta K., Mane P., Rajankar O. S., Bhowmik M., Jadhav R., Yadav S., Rawandale S., Chobe S. V. Harnessing AI for strategic decision-making and business performance optimization. International Journal of Intelligent Systems and Applications in Engineering. 2023. Vol. 11. No 10s. P. 893–912.
Leung K. H., Mo D. Y., Ho G. T., Wu C. H., Huang G. Q. Modeling near-real-time order arrival demand in e-commerce context: a machine learning predictive methodology. Industrial Management & Data Systems. 2020. Vol. 120. No 6. P. 1149-1174.
Khan M. A., Saqib S., Alyas T., Rehman A. U., Saeed Y., Zeb, A., Mohamed E. M. Effective demand forecasting model using business intelligence empowered with machine learning. IEEE. 2020. Vol. 8. P. 116013–116023.
Bharadiya J. P. Machine learning and AI in business intelligence. Trends and opportunities. International Journal of Computer (IJC). 2023. Vol. 48. No 1. P. 123–134.
Kruhse-Lehtonen U., Hofmann D. How to define and execute your data and AI strategy. Harvard Data Science Review. 2020. Vol. 2. № 3. P. 1–15. DOI: https://doi.org/10.1162/99608f92.a010feeb.
Velichko Y. Using AI in marketing: Top 5 cases & examples. Postindustria. URL: https://postindustria.com/using-ai-in-marketing-top-5-cases-examples/ (дата звернення: 29.10.2024).
Інновації в прогнозуванні попиту: як ШІ допомагає уникати непередбачуваних витрат. RAU. URL: https://rau.ua/dosvid/innovacii-prognozuvannya-popitu/ (дата звернення: 29.10.2024).
Franz T. How AI can automate your sales. Master of Code. URL: https://masterofcode.com/blog/how-ai-can-automate-your-sales (дата звернення: 29.10.2024).
Компанія «Новий стиль» впровадила модель для прогнозування обсягів продажів. RBC Group. URL: https://www.rbc.ua/ukr/news/kompaniya-noviy-stil-vprovadila-model-prognozuvannya-2024-10-25 (дата звернення: 29.10.2024).
RBC Group. Автоматизація прогнозування продажів у виробництві меблів Data Analytics & AI Summit 2024, 2024. YouTube. URL: https://www.youtube.com/watch?v=IJlppTrQ7Tw (дата звернення: 29.10.2024).
Annor-Antwi, A., Al-Dherasi, A. A. M. (2019). Application of artificial antelligence in forecasting: A systematic review. Zhejiang University of Science and Technology. DOI: https://dx.doi.org/10.2139/ssrn.3483313 .
Nesterov, V. F., Shysh, A. M., Muzychenko, T. O. (2024). Efektyvnyi ekonomichnyi rozvytok pidpryiemstva cherez intelektualnyi analiz danykh: vykorystannia AI dlia prohnozuvannia ta optymizatsii stratehii biznesu [Effective economic development of the enterprise through data mining: using AI for forecasting and optimizing business strategies]. Ekonomika ta suspilstvo – Economy and Society, No 59, pp. 182-187. (in Ukrainian).
Farion, V., Homotiuk, A., Nazar, R., & Turchyn, S. (2024). Vykorystannia shtuchnoho intelektu dlia prohnozuvannia finansovykh pokaznykiv [Using artificial intelligence for forecasting financial indicators]. Ekonomichnyi analiz – Economic Analysis, Vol. 34(2), pp. 327-337. (in Ukrainian).
Hasan, M. R. (2024). Addressing seasonality and trend detection in predictive sales forecasting: A machine learning perspective. Journal of Business and Management Studies, 6(2), pp. 100-109.
Lodha, S., Deshmukh, S., Chitnis, S., Patil, A., & Patil, A. (2023). An approach to make customer segmentation and sales prediction using artificial intelligence model. Shodhak: A Journal of Historical Research, 53(3), pp. 148-156.
Gupta, K., Mane, P., Rajankar, O. S., Bhowmik, M., Jadhav, R., Yadav, S., Rawandale, S., & Chobe, S. V. (2023). Harnessing AI for strategic decision-making and business performance optimization. International Journal of Intelligent Systems and Applications in Engineering, 11(10s), pp. 893-912.
Leung, K. H., Mo, D. Y., Ho, G. T., Wu, C. H. & Huang, G. Q. (2020). Modeling near-real-time order arrival demand in e-commerce context: a machine learning predictive methodology. Industrial Management & Data Systems, 120(6), pp. 1149-1174.
Khan, M. A., Saqib, S., Alyas, T., Rehman, A. U., Saeed, Y., Zeb, A., & Mohamed, E. M. (2020). Effective demand forecasting model using business intelligence empowered with machine learning. IEEE, 8, pp. 116013-116023.
Bharadiya, J. P. (2023). Machine learning and AI in business intelligence. Trends and opportunities. International Journal of Computer (IJC), 48(1), pp. 123-134.
Kruhse-Lehtonen, U., & Hofmann, D. (2020). How to define and execute your data and AI strategy. Harvard Data Science Review, 2(3), pp. 1-15. DOI: https://doi.org/10.1162/99608f92.a010feeb
Velichko, Y. (2024). Using AI in marketing: Top 5 cases & examples. Postindustria. Available at: https://postindustria.com/using-ai-in-marketing-top-5-cases-examples/ (accessed October 29, 2024).
Innovatsii v prohnozuvanni popytu: yak ShI dopomahaie unykaty neperedbachuvanykh vytrat [Innovations in demand forecasting: how AI helps avoid unpredictable costs]. (2024). RAU. Available at: https://rau.ua/dosvid/innovacii-prognozuvannya-popitu/ (accessed October 29, 2024) (in Ukrainian).
Franz, T. (2024). How AI can automate your sales. Master of Code. Available at: https://masterofcode.com/blog/how-ai-can-automate-your-sales (accessed October 29, 2024).
Kompaniia «Novyi styl» vprovadyla model dlia prohnozuvannia obsiahiv prodazhiv [New Style Company implemented a model for forecasting sales volumes]. (2024). RBC Group. Available at: https://www.rbc.ua/ukr/news/kompaniya-noviy-stil-vprovadila-model-prognozuvannya-2024-10-25 (accessed October 29, 2024) (in Ukrainian).
RBC Group (2024). Avtomatyzatsiia prohnozuvannia prodazhiv u vyrobnytstvi mebliv [Automation of sales forecasting in furniture production]. Data Analytics & AI Summit 2024 [Video]. YouTube. Available at: https://www.youtube.com/watch?v=IJlppTrQ7Tw (accessed October 29, 2024) (in Ukrainian).
This work is licensed under a Creative Commons Attribution 4.0 International License.