MODELING THE AMOUNT OF INCOME FROM THE SALE OF THE UTILITY COMPANY'S PRODUCTS
Abstract
The task of increasing the reliability of estimating the level of net income from the sale of products of a utility company is studied. The dependence of the amount of net income from sales of products on such factors as cost of sales and other operating income is analyzed. The presence of multicollinearity between the factors necessitated the construction of regression models using the least squares method for each factor. To build a stepwise model, the paper uses a transformation based on the decimal logarithm. We also built models using the least squares method after applying the principal components method to the factors. To test the internal parameters of the regression models built using the least squares method for significance, we used the value of their p-values. All models where the primary data were transformed using the principal components method failed the significance test. After checking the internal parameters in order to find the best model, the obtained regression models were compared using the following indicators: coefficient of determination, Fisher's criterion, and average approximation error. As a result of the comparison, the logarithmic model was recognized as the best single-factor regression model by the least squares method. To solve the problem of increasing the reliability of estimating the level of net income from the sale of products of a utility company, the paper also considers models based on machine learning. Regression models based on k-nearest neighbors and a binary decision tree were built. To build models using machine learning methods, the initial data were standardized and transformed using the principal component method. When comparing the resulting models, it turned out that the two models based on machine learning methods have a smaller approximation error than the models based on the least squares method. The best regression model for estimating the level of net income from the sale of a utility company's products was the binary decision tree model. The coefficient of determination of this model was 0.987, and the value of the average approximation error was 0.91 %.
References
Гудзь Н.В. Облікова модель формування фінансових результатів діяльності підприємств в умовах євроінтеграційних процесів в Україні. Економіка та суспільство. № 13. 2017. С. 1339–1346. URL: https://economyandsociety.in.ua/journals/13_ukr/223.pdf
Кінєва Т.С., Остапенко А.Д. Звіт про фінансові результати в системі стратегічного управління підприємством. Науковий огляд. № 9. 2015. С. 1–7. URL: https://core.ac.uk/download/pdf/217451031.pdf
Кобець С.П., Лузіна А.О. Застосування адаптивних моделей для прогнозування чистого доходу від реалізації продукції. № 4. 2019. URL: http://www.economy.nayka.com.ua/pdf/4_2019/42.pdf
Марусяк Н.Л. Фінансові ризики та їх вплив на фінансовий стан підприємства. Ефективна економіка. 2024. № 1. URL: https://www.nayka.com.ua/index.php/ee/article/view/2885/2921
Позднякова В.Д. Економетрична модель оцінювання фінансових результатів діяльності банків України. Економіка і суспільство. 2017. № 11. С. 582–587. URL: https://economyandsociety.in.ua/journals/11_ukr/94.pdf
Ткаченко І.С., Проскурович О.В. Економіко-математичне моделювання фінансового результату підприємства. Економіка: реалії часу. 2017. № 3. С. 84-94. URL: https://economics.net.ua/files/archive/2017/No3/84.pdf
Hudz N.V. (2017) Oblikova model formuvannia finansovykh rezultativ diialnosti pidpryiemstv v umovakh yevrointehratsiinykh protsesiv v Ukraini [Accounting model of formation of financial results of activity of enterprises in conditions of integration processes in Ukraine]. Economy and Society, no. 13, pp. 1339–1346. Available at: https://economyandsociety.in.ua/journals/13_ukr/223.pdf
Kineva T.S., Ostapenko A.D. (2015) Zvit pro finansovi rezultaty v systemi stratehichnoho upravlinnia pidpryiemstvomi [Report on the financial results in a system of strategic management]. Scientific review, no. 9, pp. 1–7. Available at: https://core.ac.uk/download/pdf/217451031.pdf
Kobets S., Luzina A. (2019) Zastosuvannia adaptyvnykh modelei dlia prohnozuvannia chystoho dokhodu vid realizatsii produktsii [Application of adaptive models for forecasting a net sales]. Efektyvna ekonomika, no. 4. Available at: http://www.economy.nayka.com.ua/pdf/4_2019/42.pdf
Marusiak N. (2024) Finansovi ryzyky ta yikh vplyv na finansovyi stan pidpryiemstva [Methodical approaches to the assessment of the volume of services provided by enterprises in the transport industry]. Efektyvna ekonomika, no. 1. Available at: https://www.nayka.com.ua/index.php/ee/article/view/2885/2921 (in Ukrainian)
Pozdnyakova V.D. (2017) Ekonometrychna model otsiniuvannia finansovykh rezultativ diialnosti bankiv Ukrainy [Econometric model of estimation of financial results of the activities of banks of Ukraine]. Economy and Society, no. 11, pp. 582–587. Available at: https://economyandsociety.in.ua/journals/11_ukr/94.pdf
Tkachenko I.S., Proskurovych O.V. (2017) Ekonomiko-matematychne modeliuvannia finansovoho rezultatu pidpryiemstva [Economic and mathematical modeling of enterprise’s financial results]. Economics: time realities, no. 3. Available at: https://economics.net.ua/files/archive/2017/No3/84.pdf
This work is licensed under a Creative Commons Attribution 4.0 International License.