TOURIST DEMAND FORECASTING MODELS

Keywords: forecasting, model, demand, tourism, development

Abstract

The article analyzes models of tourist demand forecasting. The complexity of the tourism industry, combined with the influence of various economic, social, political, environmental and cultural factors, creates considerable difficulties for accurate forecasting of tourist demand. Current forecasting models may not give sufficiently correct conclusions due to the complex interaction of these factors. In addition, the unpredictable consequences of crises, such as economic downs, political instability, epidemic and other negative effects, emphasize the need to create strong and adaptive forecasting models. Research on tourist demand forecasting models is an important task that is crucial for sustainable development and successful competition in tourism. The relevance of this topic is determined by the needs of the industry in accurate and intended strategies aimed at meeting the needs of the modern tourist. Tourism uses different approaches to forecasting, which can be divided into quantitative, based on mathematical calculations and qualitative methods, which, in turn, can be different types of expert assessments. Works devoted to the analysis of tourism development using a quantitative approach can be divided into two main groups: causal (econometric) models and inaccessible (time series) tools. Often -used time rows are ARIMA, GARCH models, as well as econometric models (such as CI), Error Correction Models (ECM), Time Models (TVP), Vector AutoRegression (VAR). An alternative solution is the use of qualitative forecasting methods that make it possible to take into account many defining factors, including those that are not available in any mathematical equation, such as the likelihood of terrorism or natural catastrophes, a change in public opinion. In order to make the right choice of the method of forecasting in the field of tourism, it is necessary to take into account the available resources (economic, practical, human) and their possible influence on the chosen methods of forecasting at the stage of their choice. In addition, it is recommended to focus on existing data on the advantages and disadvantages of specific techniques, as well as to consider the basic requirements for the creation of models.

References

Frechtling, D. C. Forecasting Tourism Demand: Methods and Strategies London: Butterworth-Heinemann, 2001. 279 p.

Song H. Witt S. F., Tourism Demand Modelling and Forecasting New York: Routledge, 2011. 186 p.

Wong K. F., Song H. Tourism Forecasting and Marketing New York: Routledge, 2012. 168 p.

Барна М. Ю., Миронов Ю. Економетричне моделювання динаміки туристичних потоків. Науковий вісник Полісся. 2017. № 4 (1). С. 165-170.

Кифор М. Аналіз сезонності та мінливості туристичних потоків на прикладі західних регіонів України. Бізнес Інформ. 2020. № 5. С. 154-160.

Благун І., Лещук Г., Кифор М. Прогностична модель оцінки туристичних потоків з урахуванням фактора адитивної сезонності на прикладі Івано-Франківської області. Проблеми економіки. 2019. № 4(42). С. 250-256.

Орлова В. В. Особливості розробки прогнозів розвитку туристичної галузі. Актуальні проблеми розвитку економіки регіону. 2012. № 8 (1). С. 223– 227.

Теребух А. А. Прогнозування динаміки розвитку туристичної інфраструктури та її вплив на соціально-економічний клімат в Західному регіоні України. Молодий вчений. 2017. № 10. С. 1060–1067.

Морохович В. С. Економіко-математичне моделювання туристичних потоків Закарпатської області. Науковий вісник Ужгородського університету. Серія: Економіка: зб. наук. пр. 2017. № 1. С. 143-146.

Crampton L.J. The gravitation model. A tool for travel market analyses. Revue du tourisme. 1965. 20. № 3

Cesario F.J. & Knetsch J.L. Time bias in recreation benefit estimation. Water Research. 1970. 6. №3

Fischer A.C, Krutilla J.V. Determination of optimal capacity of resource-based recreation facilities. Natural Resources Journal. 1972. 12. №3

Gearing C.E., Swart W.W., Var T. Planning for tourism development. Quantitative approaches. N.Y.: Praeger Publishers. 1976.

Box, G.E.P. and Jenkins, G.M. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. 1970. 553 p.

Song H., Hung H. Tourism Demand Modeling and Forecasting: A Review of Recent Research. Tourism Management. 2008. 29(2). P. 203–220

Shan, J. and Wilson, K. Causality between Trade and Tourism: Empirical Evidence from China. Applied Economics Letters. 2001. 8. P.279-283.

Balaguer, L. & M. Cantavella-Jorda. Тourism as a Long-Run Economic Growth Factor: The Spanish case. Applied Economics. 2002.Vol.34. P. 877- 884

Dritsakis, N. Tourism as a Long-Run Economic Growth Factor: An Empirical Investigation for Greece. Tourism Economics. 2004. 10. P. 305-316

Gunduz, L., & A. Hatemi-J. Is the Tourism-Led Growth Hypothesis Valid for Turkey?. Applied Economics Letters. 2005. Vol.12, P. 499-504

Eugenio-Martin, J. L., N. M. Morales, & R. Scarpa. Tourism and Economic Growth in Latin American Countries: A Panel Data Approach. Fondazione Eni Enrico Mattei Working Paper Series. 2004.

Oh, C.O. The Contribution of Tourism Development to Economic Growth in the Korean Economy. Tourism Management. 2005. 26. P. 39-44

Kim, H.J., M-.H. Chen, and S.S. Jang. Tourism Expansion and Economic Development: The Case of Taiwan. Tourism Management. 2006. Vol.27. P. 925-933

Mishra, P., Himanshu, B., Mohapatra, S. Causality between Tourism and Economic Growth: Empirical Evidence from India. European Journal of Social Sciences. 2011. Vol. 18, № 4

Frechtling, D. C. (2001) Forecasting Tourism Demand: Methods and Strategies London: Butterworth-Heinemann. 279 p.

Song H. Witt S. F. (2011) Tourism Demand Modelling and Forecasting New York: Routledge. 186 p.

Wong K. F., Song H. (2012) Tourism Forecasting and Marketing New York: Routledge. 168 p.

Barna M. Yu., Myronov Yu. (2017) Ekonometrychne modeliuvannia dynamiky turystychnykh potokiv [Econometric modeling of the dynamics of tourist flows]. Naukovyi visnyk Polissia. № 4 (1). S. 165-170.

Kyfor M. (2020) Analiz sezonnosti ta minlyvosti turystychnykh potokiv na prykladi zakhidnykh rehioniv Ukrainy [Analysis of seasonality and variability of tourist flows on the example of western regions of Ukraine]. Biznes Inform. № 5. S. 154-160.

Blahun I., Leshchuk H., Kyfor M. (2019) Prohnostychna model otsinky turystychnykh potokiv z urakhuvanniam faktora adytyvnoi sezonnosti na prykladi Ivano-Frankivskoi oblasti [Prognostic model of assessment of tourist flows, taking into account the factor of additive seasonality on the example of Ivano-Frankivsk region.]. Problemy ekonomiky. № 4(42). S. 250-256.

Orlova V. V. (2012) Osoblyvosti rozrobky prohnoziv rozvytku turystychnoi haluzi [Features of development of forecasts for the development of tourism industry]. Aktualni problemy rozvytku ekonomiky rehionu. № 8 (1). S. 223– 227.

Terebukh A. A. (2017) Prohnozuvannia dynamiky rozvytku turystychnoi infrastruktury ta yii vplyv na sotsialno-ekonomichnyi klimat v Zakhidnomu rehioni Ukrainy [Forecasting the dynamics of tourist infrastructure development and its impact on the socio-economic climate in the western region of Ukraine]. Molodyi vchenyi. № 10. S. 1060–1067.

Morokhovych V. S. (2017) Ekonomiko-matematychne modeliuvannia turystychnykh potokiv Zakarpatskoi oblasti [Economic and mathematical modeling of tourist flows of Transcarpathian region]. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia: Ekonomika: zb. nauk. pr. № 1. S. 143-146.

Crampton L.J. (1965) The gravitation model. A tool for travel market analyses. Revue du tourisme. 20. № 3

Cesario F.J. & Knetsch J.L. (1970) Time bias in recreation benefit estimation. Water Research. 6. №3

Fischer A.C, Krutilla J.V. (1972) Determination of optimal capacity of resource-based recreation facilities. Natural Resources Journal. 12. №3

Gearing C.E., Swart W.W., Var T. (1976) Planning for tourism development. Quantitative approaches. N.Y.: Praeger Publishers.

Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. 553 p.

Song H., Hung H. (2008) Tourism Demand Modeling and Forecasting: A Review of Recent Research. Tourism Management. 29(2). P. 203–220

Shan, J. and Wilson, K. (2001) Causality between Trade and Tourism: Empirical Evidence from China. Applied Economics Letters. 8. P.279-283.

Balaguer, L. & M. Cantavella-Jorda. (2002) Тourism as a Long-Run Economic Growth Factor: The Spanish case. Applied Economics. Vol.34. P. 877- 884

Dritsakis, N. (2004) Tourism as a Long-Run Economic Growth Factor: An Empirical Investigation for Greece. Tourism Economics. 10. P. 305-316

Gunduz, L., & A. Hatemi-J. (2005) Is the Tourism-Led Growth Hypothesis Valid for Turkey?. Applied Economics Letters. Vol.12, P. 499-504

Eugenio-Martin, J. L., N. M. Morales, & R. Scarpa. (2004). Tourism and Economic Growth in Latin American Countries: A Panel Data Approach. Fondazione Eni Enrico Mattei Working Paper Series.

Oh, C.O. (2005) The Contribution of Tourism Development to Economic Growth in the Korean Economy. Tourism Management. 26. P. 39-44

Kim, H.J., M-.H. Chen, and S.S. Jang. (2006). Tourism Expansion and Economic Development: The Case of Taiwan. Tourism Management. 2006. Vol.27. P. 925-933

Mishra, P., Himanshu, B., Mohapatra, S. (2011) Causality between Tourism and Economic Growth: Empirical Evidence from India. European Journal of Social Sciences. Vol. 18, № 4

Article views: 31
PDF Downloads: 31
Published
2023-12-26
How to Cite
Rumiantseva, I. (2023). TOURIST DEMAND FORECASTING MODELS. Economy and Society, (58). https://doi.org/10.32782/2524-0072/2023-58-92
Section
ECONOMICS