ASSESSMENT OF POTENTIAL INNOVATION DEVELOPMENT OPPORTUNITIES FOR THE NATIONAL ECONOMY AT THE REGIONAL LEVEL USING ARTIFICIAL INTELLIGENCE TOOLS

Keywords: innovative policy, innovative development, competitiveness, clustering, Kohonen's self-organizing maps

Abstract

The article considers the potential of using artificial intelligence tools for the multidimensional classification of regions in Ukraine's innovation policy evaluation system. The article builds a neural network using Kohonen self-organizing map tools, based on a database of 25 research objects and 27 indicators. The process involves forming a sample dataset for analysis, processing input data based on the self-organization of the Kohonen map, forming descriptive characteristics of clusters, and substantiating these findings for conclusions. Five clusters of regions were created based on the indicators of innovative development of the region and the assessment of their impact on competitiveness. The descriptive characteristics of the clusters helped to identify the strengths and weaknesses of the regions' innovation policies and substantiate potential opportunities for future innovative development. The results indicate that clusters #0 (Dnipropetrovsk and Zaporizhzhia regions) and #4 (Kyiv city) exhibit insufficient development and adaptation of eco-innovations. Meanwhile, clusters #1 (Donetsk, Kirovohrad, Mykolaiv, Volyn, Cherkasy, Luhansk regions) and #2 (Vinnytsia, Poltava, Zhytomyr, Zakarpattia, Ivano-Frankivsk, Rivne, Sumy, Ternopil, Kherson, Khmelnytskyi, Chernihiv regions) are characterized by a discrepancy between funding and scientific performance, but with a more advanced digitalization system of business processes. Cluster #3 (Kyiv, Lviv, Odesa, Kharkiv regions) is the most balanced, but it is necessary to direct a larger volume of funding towards environmental protection. The proposed hypothesis regarding the direct relationship between the number of innovatively active enterprises involved in innovative cooperation and the costs of implementing innovations was confirmed. The low correlation supports the hypothesis that insufficient state support for the development of innovative enterprises negatively affects the level of competitiveness in the regions where these enterprises are located. Based on the clustering results, the main objectives of state innovation policy in the regions should include creating a favorable innovation environment, promoting eco-innovations, stimulating digital transformation across all sectors, achieving a balance between financing for innovative research and development and its effective utilization, and more.

References

Горбик В. М. Кластеризація регіонів у державному управлінні природно-економічним потенціалом. Держава та регіони. 2018. № 3 (63). С. 57–62.

Індекс конкурентоспроможності міст України 2021. Інститут економічних досліджень та політичних консультацій. URL: http://www.ier.com.ua/ua/mci/index_2021

Інформація Державної служби статистики України. URL: https://www.ukrstat.gov.ua/

Інформація порталу «Дія. Бізнес». URL: https://business.diia.gov.ua/

Князевич А. О., Брітченко І. Г. Кластерний підхід до створення інноваційної інфраструктури країни. Науковий вісник Мукачівського державного університету. 2015. № 2(4). Ч.1. С. 24–29.

Педченко Н.С., Стрілець В.Ю., Франко Л.С. Макроконкурентна парадигма інноваційного розвитку національної економіки. Наукові перспективи. 2022. №1(19). С. 351–360.

Поліщук І. І. Кластеризація як форма забезпечення конкурентоспроможності регіону. Економіка та держава. 2015. № 9. С. 22–25.

Потапова Н. А. Кластеризація економічних регіонів України за показниками інноваційної та наукової діяльності. Вісник Національного університету „Львівська політехніка”. 2010. № 5. С. 33–39.

Річний звіт Державного підприємства «Український інститут інтелектуальної власності» (Укрпатент) за 2021 рік. URL: https://ukrpatent.org/uk/news/main/annual-report-2021-21092022

Синиця В. М., Вакун О. В. Кластеризація регіонів за рівнем економічного потенціалу. Економіка і суспільство. 2017. № 12. С. 776–784.

Яцкевич І. В. Інноваційна політика України у післявоєнний період. Економіка та суспільство. 2022. № 39. URL: https://economyandsociety.in.ua/index.php/journal/issue/view/39

Balaban O. S. Formation and development of clusters as a factor of innovation and economic growth in Ukraine. Economic Annals-XXI. 2019. № 177 (1-2). P. 26–30.

Cottrell M., Olteanu M., Rossi F., Villa-Vialaneix N. N. (2018) Self-organizing maps, theory and applications. Revista de Investigacion Operacional. 2018. № 39 (1). P. 1–22.

García-Tejedor A. J., Nogales A. An open-source Python library for self-organizing-maps. Software Impacts. 2022. № 12. P. 100–280.

Gubersky, L. (2015). Clusters and cluster policy: modern concept and features of implementation. Economy and region, 1(57), 7–14.

Melnyk, L., Panchenko, N. Cluster policy as a tool of innovative regional development. Journal of Entrepreneurship Education. 2019. № 22 (6). P. 1–9.

Nowak-Brzezińska A., Horyn C.. Self-Organizing Map algorithm as a tool for outlier detection. Procedia Computer Science. 2022. № 207. P. 2162–2171.

Shapoval O. I. Cluster approach in the context of regional development. Actual problems of economics. 2020, № 222(10). P. 207–212.

Horbyk V. M. (2018) Klasteryzatsiia rehioniv u derzhavnomu upravlinni ekonomichnym potentsialom [Clustering of regions in state management of natural and economic potential]. State and regions, vol. 3, no. 63, pp. 57–62. (in Ukrainian)

Competitiveness Index of Ukrainian Cities 2021. Institute of Economic Research and Political Consultations. Available at: http://www.ier.com.ua/ua/mci/index_2021 (accessed 01.03.2023)

Information of the State Statistics Service of Ukraine. Available at: https://www.ukrstat.gov.ua/ (accessed 01.03.2023)

Information on the portal "Diya. Business". Available at: https://business.diia.gov.ua/ (accessed 01.03.2023)

Knyazevich A. O., Britchenko I. G. (2015) Klasternyi pidkhid do stvorennia innovatsiinoi infrastruktury krainy [Cluster approach to the creation of innovative infrastructure of the country]. Scientific Bulletin of Mukachevo State University, vol. 2, no. 4.1, pp. 24–29. (in Ukrainian)

Pedchenko N.S., Strilets V.Yu., Franko L.S. (2022) Makrokonkurentna paradyhma innovatsiinoho rozvytku natsionalnoi ekonomiky [Macrocompetitive paradigm of innovative development of the national economy]. Scientific perspectives, vol. 1 no. 19, pp. 351–360 (in Ukrainian)

Polishchuk I. I. (2015) Klasteryzatsiia yak forma zabezpechennia konkurentospromozhnosti rehionu [Clustering as a form of ensuring the competitiveness of the region]. Economy and the state, no. 9, pp. 22–25. (in Ukrainian)

Potapova N. A. (2010) Klasteryzatsiia ekonomichnykh rehioniv Ukrainy za pokaznykamy innovatsiinoi ta naukovoi diialnosti [Clustering of economic regions of Ukraine according to indicators of innovative and scientific activity]. Bulletin of the Lviv Polytechnic National University, no. 5, pp. 33–39. (in Ukrainian)

Annual report of the State Enterprise "Ukrainian Institute of Intellectual Property" 2021. Available at: https://ukrpatent.org/uk/news/main/annual-report-2021-21092022 (accessed 01.03.2023)

Sinytsia V. M., Vakun O. V. (2017) Klasteryzatsiia rehioniv za rivnem ekonomichnoho potentsialu [Clustering of regions according to the level of economic potential]. Economy and society, no. 12, pp. 776–784. (in Ukrainian)

Yatskevich I. V. (2022) Innovatsiina polityka Ukrainy u pisliavoiennyi period [Innovative policy of Ukraine in the post-war period]. Economy and society, no. 39. Available at: https://economyandsociety.in.ua/index.php/journal/issue/view/39 (accessed 01.03.2023) (in Ukrainian)

Article views: 137
PDF Downloads: 122
Published
2023-01-31
How to Cite
Franko, L. (2023). ASSESSMENT OF POTENTIAL INNOVATION DEVELOPMENT OPPORTUNITIES FOR THE NATIONAL ECONOMY AT THE REGIONAL LEVEL USING ARTIFICIAL INTELLIGENCE TOOLS. Economy and Society, (47). https://doi.org/10.32782/2524-0072/2023-47-92
Section
ECONOMICS