ECONOMIC AND MATHEMATICAL MODELING OF THE INFLUENCE OF MACROECONOMIC FACTORS ON REAL ESTATE MARKET PRICING

Keywords: price, pricing, real estate, macroeconomic factors, machine learning

Abstract

The process of determining and forecasting the pricing of the real estate market has a high degree of complexity due to the dependence of market processes on many meso- and macroeconomic factors of the national economy. The purpose of the work is. to create a model for assessing the impact of various factors on the price per square meter of the primary market in Kyiv. It has been identified potential macroeconomic and regional factors influencing the pricing of the real estate market in Kyiv. The construction of a linear multivariate model was based on statistical data from the civil service of Ukraine, This model allows us to estimate the correlation between two or more independent variables and one dependent variable. The regression-correlation analysis was conducted to avoid multicollinearity. The following criteria were applied: correlation coefficient Pearson, direct selection method, Fisher's criterion, and p-value. Some factors were excluded from the process. As a result, a model with fairly high accuracy was obtained. Also, the expediency of using the machine learning method was substantiated and the model of Random Forest was built by using the R programming language. The sample was divided into two parts, one of the artificial intelligence was trained (80%), and on the other, there was a model testing by forecasting (20%). The big advantage of the random forest is that we can find out which factors are more important for our model. In the process of model building, the most insignificant factors were excluded and we got a model with a quite high accuracy. The results of the comparison of models showed that machine learning, namely the Random Forest method, is more effective for the study of complex issues, such as the impact of macroeconomic factors on the pricing of the real estate market. During the study, it was found that the price per square meter in new buildings is influenced by such factors as the discount rate, exchange rate, per capita expenditure, gross regional product, subsistence minimum, and the number of the available population.

References

Загребельна К.В. Динаміка кон'юнктури ринку нерухомості в Україні. Економіка та держава. 2018. № 11. С. 102–106.

Кобзан С. Формування ринку нерухомості. Практичні аспекти та особливості оцінки. 2019. 212 с.

Особливості ринку нерухомості. URL: https://stud.com.ua/44563/ekonomika/osoblivosti_rinku_neruhomosti.

Кучеренко В.Р., Заєць М.А., Захарченко О.В., Сментина Н.В., Улибіна В.О. Оцінка та управління нерухомістю : навчальний посібник. Одеса : Видавництво ТОВ «Лерадрук», 2013. 272 с.

Літнарович Р.М. Побудова і дослідження математичної моделі за джерелами експериментальних даних методами регресійного аналізу. Навчальний посібник.Рівне : МЕГУ, 2011. 140 с.

Державна служба статистики України. URL: http://www.ukrstat.gov.ua

Кореляційний аналіз. URL: https://pidru4niki.com/12461220/statistika/korelyatsiyniy_analiz

Лінійний множинний регресійний аналіз. URL: http://ekonometrika.ho.ua/4.htm

Таблиці функцій та критичних точок розподілів. Розділи: Теорія ймовірностей. Математична статистика. Математичні методи в психології. / Укладач: М.М. Горонескуль. Харків: УЦЗУ, 2009. 90 с.

Масова оцінка житлової нерухомості з використанням методів машинного навчання. URL: https://www.ukrlogos.in.ua/10.11232-2663-4139.16.50.html

Clinton S. Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting / Sheppard Clinton., 2019.

Zagrebelna K.V. (2018) Dynamics of the real estate market in Ukraine. Economy and state, 11, 102–106. (in Ukrainian)

Kobzan S. (2019) Formation of the real estate market. Practical aspects and features of evaluation. (in Ukrainian)

Features of the real estate market. Available at: https://stud.com.ua/44563/ekonomika/osoblivosti_rinku_neruhomosti (in Ukrainian)

Kucherenko V.R., Zayets M.A., Zakharchenko O.V., Smentina N.V., Ulybina V.O. (2013) Real estate valuation and management: textbook. Odesa: Publishing house "Leradruk". (in Ukrainian)

Litnarovych R.M. (2011) Construction and research of mathematical model by sources of experimental data by methods of regression analysis. Rivne: Study guide, MEGU. (in Ukrainian)

State Statistics Service of Ukraine. Available at: http://www.ukrstat.gov.ua (in Ukrainian)

Correlation analysis. Available at: https://pidru4niki.com/12461220/statistika/korelyatsiyniy_analiz

Linear multiple regression analysis. Available at: http://ekonometrika.ho.ua/4.htm (in Ukrainian)

Goroneskul M.M. (2009) Tables of functions and critical points of distributions. Sections: Probability theory. Mathematical statistics. Mathematical methods in psychology. Kharkiv. (in Ukrainian)

Residential real estate mass valuation using machine learning methods. Available at: https://www.ukrlogos.in.ua/10.11232-2663-4139.16.50.html (in Ukrainian)

Clinton S. (2019) Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting.

Article views: 231
PDF Downloads: 191
Published
2022-09-27
How to Cite
Pyshnograiev, I., & Koval, A. (2022). ECONOMIC AND MATHEMATICAL MODELING OF THE INFLUENCE OF MACROECONOMIC FACTORS ON REAL ESTATE MARKET PRICING. Economy and Society, (43). https://doi.org/10.32782/2524-0072/2022-43-60
Section
ECONOMICS