Bunyck # 63 / 2024 EKOHOMIKA TA CYCIMINbCTBO

DOI: https://doi.org/10.32782/2524-0072/2024-63-3

UDC 004.01:005.94

A TEMPLATE FOR TECHNICAL DESIGN DOCUMENTS
TO HELP DISTRIBUTED SOFTWARE DEVELOPMENT
TEAMS COLLABORATE BETTER

LUAB/TIOH AN3ANHY TEXHIYHOI AOKYMEHTALLII
ANA KPALWOI CriBrnPAUI PO3SPOBHUKIB
PO3NOAINNTEHNX KOMAHA

Bogolii Oleksandr
PhD Student,
Higher Education Institution the “KROK” University
ORCID: https://orcid.org/0000-0003-0253-667X

Boroniii OnekcaHgp
BH3 «YHiBepcuteT ekoHOMIiKM Ta npaBa «KPOK>»

Technical Design Documents (TDD) are commonly adopted documents in the software development industry that
describe the technical solution implementation design. These documents are informal and lack strict requirements
regarding their content. The structure often differs from organization to organization. Lack of standardized structure
often results in low-quality design documents that can hinder successful technical solution implementation. In this
paper, we applied a grounded theory method to analyze various organization-specific TDD structures and proposed
a standardized structure for this document. In addition to the plain text structure, we visualized it in the form of a
mindmap to facilitate the adoption of this template. Organizations can use the proposed TDD template structure as
a basis for the company-specific structure of TDD and may include all or part of the sections proposed.

Keywords: technical design document, template, mindmap, software development, distributed team.

[OKYMEHTN TEXHIYHOrO AM3aliHy € 3ara/lbHONPUAHATAMK LOKYMEHTMW B iHAYCTPIl pO3p0bKM NporpaMHoro 3abes-
MEYEHHS], LLO OMUCYIOTb AM3aliH IMNIeMeHTaLii TEXHIYHOro pilleHHs. Lii gokyMeHTU € HechopMasibHUMK | He Ma-
t0Tb CYBOPMX BUMOT LLOAO IXHLOTO 3MICTY. BifiCyTHICTb CTaHAapPTU30BaHO! CTPYKTYpY YacTo NPU3BOAUTbL A0 HU3bKOT
AKOCTI MPOEKTHUX OOKYMEHTIB, L0 MOXe CTaTu Ha 3aBafi YCNilHOT peasizayii TEXHIYHOro pilleHHs. Tomy, Kopuc-
HO0 NPaKTMKOIO € CTaHAAPTM3aLlist CTPYKTYPU LOKYMEHTALi TEXHIYHOTO An3aliHy BCepeavHi opraHisadii, Wwo cnpuse
HaslaroKeHHI0 MPOLIECiB PO3POOKM NPOrpaMHOro 3abe3neyeHHs KomnaHii. B Ui cTaTTi My BMKOPUCTa/IM MeTof
00I'pyHTOBAHOI Teopil, WOo6 npoaHanisyBaTy CTPYKTYpPWU AOKYMEHTIB, L0 BMKOPUCTOBYIOTLCS B PI3HMX OpraHizawisix
[N51 OMUCY TEXHIYHOTO pilleHHS. Micas Lboro 6y/10 3aCTOCOBAaHO OCbOBE KOAYBaHHS A/151 BUSIB/IEHHSI B3A€MO3B'A3KIB
MK KaTeropiamu Ta nigkateropisiMv B pi3HUX CTPYKTYpax AOKYMEHTIB, & TakoX BMOIpKOBE KOAYBaHHA 4715 iHTerpawi
Ta YTOYHEHHS BM3HAYEHMX KaTeropiii. B pesynsrati npoBefeHOro AOoCigpKeHHs 6yn10 NpeacTaBieHO po3po6/IeHwii
CTaH4apTV30BaHWiA WabnoH AOKYMEHTY TEeXHIYHOro ausaiiHy. OcTatoyHa CTPyKTypa cknagaetbes 3 11 OCHOBHYMX
po3gainis: Betyn, BapiaHTu pilweHHs, Moganbui acnektn, beaneka Ta KoHiAeHUIHICTb, TecTyBaHHS, IMniemeHTa-
List, BnpoBamKeHHs Ta po3ropTaHHs, IHCTPYKLii, OujiHKa pilleHHs, BiakpuTi nuTaHHsA Ta HacTynHi Kpoku. BmicT nepe-
NiYeHUX po3ainis onucaHuini B OCHOBHOMY TeKCTi cTaTTi. OKpiM 3BMYAHOT TEKCTOBOI CTPYKTYpU, MU Bi3yanisyBain
CTPYKTYPY Y BUMNSAAI MEHTa/IbHOI KapTy, W06 CNpoCcTMTK Tl CIPUAHATTA. 3anponoHoBaHuii LWabnoH 6yB nepesipeHnii
rajly3eB/MU eKcrnepTamy Ta NPOTECTOBaHMWIA Ha peasibHOMY NMPOEKTI. 3arasioM OTpYMaHOo MO3UTUBHI Bigryku. Opra-
Hi3aLii MOXyTb BUKOPUCTOBYBATW 3anponOHOBaHWiA WaboH SK OCHOBY AJ/151 CTBOPEHHSA cneuugivyHmnX gas Komnawii
[IOKYMEHTIB TEXHIYHOTO AM3aliHy, L0 MOXYTb BK/KOUYATK BCi @60 YaCTMHY 3anponoHOBaHMX PO3ainis.

KniouoBi cnoBa: JOKYMEHT TEXHIYHOTO Au3aiiHy, LWab/oH, MeHTa/lbHa KapTa, po3pobka nporpamHoro 3abes-
MEeYeHHs1, po3nogisieHa kKoMaHaa.

1. Introduction challenges faced by companies that operate in
Nowadays, software is often developed in a such a setup. The main challenges for efficient
globally distributed environment. There are many software development in a remote distributed

© Bogolii Oleksandr, 2024

MEHEOXMEHT

MEHEOXXMEHT

EKOHOMIKA TA CYCIMNINbCTBO

Bunyck # 63 / 2024

environment are lack of communication, coordi-
nation, control, and complicated knowledge
sharing (Bogolii, 2023).

Distributed development teams, often working
in different timezones, actively use Technical
Design Documents (TDD) to share knowledge
about technical solution implementation
strategies. Sharing knowledge among
employees, both within and across teams, is
essential for effective knowledge management
and fostering innovation (Jackson et al., 2006;
Kajko-Mattsson, 2008).

Different development teams have different
standards and conventions for technical design
templates, depending on their situation. These
are informal documents and, thus, do not follow
strict guidelines for their content. Most often,
TDD defines details of solution architecture,
diverse data flow diagrams, data validation rules,
high-level documentation of the code, etc.

The heterogeneity of standards for TDD can
lead to problems during distributed software
development (Henderson, 2024). Without a
standard format, each team or individual may
create documents in their preferred style,
leading to inconsistency across the organization.
This can make it difficult for team members
to understand each other's documents and
collaborate effectively (Aghajani et al., 2019).

In addition, a lack of standardization may
result in unclear or incomplete technical design
documents with varying quality. This can lead
to confusion regarding project requirements,
architecture, and implementation detalils,
potentially causing costly errors or rework later
in the development process (Kajko-Mattsson,
2008; LinkedIn community, 2023).

Thus, establishing a certain structure for this
document inside an organization has proven to
be helpful, enabling engineers to enhance their
efficiency and improve the quality of their work.
A well-organized structure, along with explicit
guidelines, forms the foundation for maintaining
consistent and clear technical documentation
(Aghajani et al., 2019).

Analysis of recent research and
publications reveals multiple studies that
focus on the standardization of certain aspects
of technical documentation processes in
organizations (Caponi et al., 2018; Uikey et
al., 2011). For example, Alwazae et al. (2015)
proposed the Best Practice Document Template
(BPDT) to describe a company's best practices in
a detailed and systematic way. Another example
is the template for requirements documentation
(Kalfat et al.,, 2023) and the template for

technical specifications or technical datasheets
(Seghiri & Luque Giraldez, 2023). Also worth
mentioning is the C4 model for visualizing the
architecture of software systems. It helps in
creating a standardized approach to software
documentation through its structured way of
presenting different levels of abstraction (Brown,
2018).

To our knowledge, there were no studies
regarding technical design document standar-
dization.

This research aims to overview the
existing design document templates used in the
software development industry and propose a
standardized TDD template incorporating the
latest industry trends.

The rest of the paper is structured as follows:
Section 2 analyzes the popular TDD templates
in software development. Section 3 presents
the proposed TDD template and discusses its
structure. Section 4 explains how the template
was evaluated, and finally, Section 5 concludes
the paper.

2. Methods

Inthis section, we will design the TDD structure
that could be useful as a standard template
inside a typical software development company.
The approach we use in this paper incorporates
a grounded theory method (Wolfswinkel et al.,
2013; Johannesson & Perjons, 2014). In the
following sections, we will describe the steps
involved in this process in more detail.

2.1. Define inclusion and exclusion criteria

We start by defining the inclusion and
exclusion criteria. Typically, sources other than
peer-reviewed journals, conference articles, and
book chapters are not considered acceptable
data for a scholarly review. Unfortunately, we
did not find many research papers presenting
real-world technical design documents. That is
why we took another approach by examining the
technical blogs of known software development
companies that share their own TDD structure or
existing templates. We accept such sources as
valid for our review, as publications in companies’
blogs are often reviewed by multiple people,
including software architects, product and
project managers, the marketing department,
etc., so they meet our quality requirements.
We restricted our search to big companies with
known expertise in software development.

We defined the following search terms:
Technical Design Document (TDD), Technical
Implementation Document (TID), Technical
Specification Document (TSD), Low-Level
Design Document (LLD), Detailed Design

Bunyck # 63 / 2024

EKOHOMIKA TA CYCIMINbCTBO

Document (DDD) and Requests for Comments
(RFC).

All these terms are very often used
interchangeably, depending on the organization.
Their main goal is to provide detailed technical
descriptions of software solutions.

Requests for Comments (RFC) were initially
used in the standardization process for Internet
protocols, procedures, and technologies by
the Internet Engineering Task Force (IETF).
Although Technical Design Documents (TDD)
and Requests for Comments (RFC) are not
the same, many companies borrowed this
established publication term for technical design
documents.

2.2. Search and Selection

Our research mainly used Google searches
to find official technical blogs of companies that
share their TDD templates. In addition to this, we
also searched Twitter posts for any mentions of
our search terms, identified a list of companies,
and then proceeded with examining companies'
technical blogs for publications about the
usage of TDD.

At this stage, we examined the structure
of found document templates in detail. Many
types of documents are used in the software
development industry for different purposes and
with varying levels of abstraction. Often, the
structure of these documents has similar sections,
causing some confusion. For example, several
found TDD templates were structurally more
similar to Product Requirements Documents
(PRD) or High-Level Design Documents (HLD).
For this reason, we left only documents whose
structure focused on technical aspects of
the designed solution, such as process flow,
scalability, performance, exception handling,
security, etc.

The biggest contribution to our analysis was
made by the publications of Golman (2020),
Orosz (2018), Stanford University IT (n.d.),
Mage (2021), Donovan (2020), Kingson (2023),
Slite (2024), and Dupont (2024).

2.3. Analyze

To organize the information, we visualized
each selected template as a mindmap, as this
format of visualization has proven efficient for
studying and organizing ideas (Farrand et al.,
2002; Nurlaila, 2013). We added corresponding
nodes and subnodes connected with arrows for
each section and subsection to illustrate their
relationships. At last, we carefully examined the
descriptions (if available) of inner subsections to
identify the possible list of items they are intended
to include. These items were also drowned as

subnodes connected to their corresponding
subsections.

After this, we applied ‘axial coding’ to identify
the interrelationships between categories and
their subcategories of different templates and
‘selective coding’ to integrate and refine the
identified categories. As part of this activity, we
identified sections with similar or overlapping
contents, synonyms for the same concepts and
activities, etc.

3. Results

We ended up with a template structure,
presented below and visualized in Figure 3.

Technical Design Document

1. Introduction

1.1. Front Matter
1.2. Brief Summary
1.3. Related Documents
1.4. Glossary
1.5. Requirements
2. Solutions
2.1. Current Solution
2.1.1. Description
2.1.2. Pros & Cons
2.2. Proposed Solution
2.2.1. Ul & UX
2.2.2. System Context Diagram
2.2.3. Process Flow Diagram
2.2.4. API changes
2.2.5. Data storage
2.3. Alternatives
2.3.1. Description
2.3.2. Pros & Cons
3. Further Considerations
3.1. Cost Analysis
3.2. Accessibility
3.3. Regional Considerations
3.4. Third-party Services & Platforms
3.5. Resilience
3.6. Scalability
3.7. Risks
4. Security & Privacy
4.1. Security
4.2. Data Protection & Privacy Compliance
4.3. Data Retention
5. Testing
5.1. Load & Performance Testing
5.2. Testing Plan
5.3. Test Data
54. QA
6. Implementation
6.1. Epics & tasks
6.2. Milestones
6.3. Timeline
7. Rollout & Deployment
7.1. Deployment Environments

MEHEOXMEHT

MEHEOXXMEHT

EKOHOMIKA TA CYCIMNINbCTBO

Bunyck # 63 / 2024

7.2. Phased Rollout Plan

7.3. Rollback Plan

7.4. Communication Plan
8. Runbook

8.1. Health Metrics

8.2. Troubleshooting

8.3. Alerts

8.4. Monitoring

8.5. Logging
8.6. Operational Procedures
9. Evaluation
9.1. Cost-benefit Analysis
9.2. Performance Metrics
9.3. Impact Assessment
10. Open Questions
11. Next Steps

Front Matter

Brief Summal
Introduction Related Documents
s

Glossa
Requirements

Current Solution 2 s et
e Pros & Cons

/'/ Ul & UX
/ System Context diagram
Solutions Proposed Solution Process Flow diagram
APl changes
Data storage
Description
Alternatives e
— Pros & Cons

Cost Anal

Regional Considerations
Further Considerations Third-party Services & Platforms

Resilience

Scalabili

Risks

Security
Security & Privacy Data Protection & Privacy Compliance
L
__Data Retention _
Load & Performance Testing
Testing Plan

Test Data

___ Epics & tasks
Implementation / Milestones

Deployment Environments
Phased Rollout Plan

Rollback Plan
Communication Plan
Health Metrics
__Troubleshooting _

Rollout & Deployment

Runbook

Operational Procedures

Cost-benefit Analysis
Evaluation - Performance Metrics
Impact Assessment

Open Questions

Figure 1. Mindmap for Proposed TDD Template

Bunyck # 63 / 2024

EKOHOMIKA TA CYCIMINbCTBO

The proposed TDD template consists of
11 main sections. Below, we describe the
contents of these sections.

3.1. Introduction

The design document starts with an
Introduction section, which provides an
overview and context for the topic being
discussed and the document in general. Here
we define four subsections: Front Matter, Brief
Summary, Glossary, Requirements, and Related
Documents.

Front Matter is the first page of the TDD
and is used to define the document's author,
which team is working on this solution, who will
be the reviewers and approvers, and list the
teams (stakeholders) affected by the changes.
As the TDD often passes through a few phases
of reviews, some significant changes may be
made, so adding a change history table listing
the most critical updates may be valuable.

A Brief Summary gives a general overview of
the issue (from the user's perspective). Provide
an overview of the context, objective background
facts, and problems the users are facing. This
subsection should also include a brief overview
of the solution that is being proposed.

A Glossary or Vocabulary lists specific
terms and abbreviations used throughout the
document. By providing clear and consistent
definitions for terms used within the document,
a glossary ensures that all readers interpret and
understand the terminology in the same way.

The Requirements section defines the goals
we try to achieve with a proposed solution.
It wusually includes product requirements,
user stories or use cases, and requirements.
We may define what is outside the scope or not
a goal of this document. Technical requirements
may include service SLAs, characteristics of
components, metrics, and ACID compliance.

Finally, this section should contain links to
Related Documents and supporting materials
used when developing the proposed design.

3.2. Solutions

This part of the TDD is focused on illustrating
the existing and suggested solutions for the
problem and discussing the alternative solutions.

This section starts by illustrating the Current
Solution and its pros and cons.

After a brief overview of the current solution,
next is a description of the Proposed Solution.
This section is the longest part of the design
document and requires the most research,
planning, and preparation. It presents an
engineering approach to solving the technical
problem and often includes the following:

— User Interface & User Experience: This
would include how the user interface would be,
the features and actions the users would take,
and the Ul elements.

— System Context Diagram: This
demonstrates how the system fits into the
broader technical environment and helps

readers understand how the new design fits into
a familiar setting.

— Process Flow Diagrams: depict the
overall process flow so that it is clear to the
developer what the outcome is and how to
reach it.

— APl changes: API endpoints, sample API
requests and responses, etc.

— Data storage: Data model and schema
changes.

Finally, Alternative solution designs should
be presented. Presenting alternatives with their
trade-offs shows explicitly why the selected
solution has been chosen.

3.3. Further Considerations

In this part of the document, we will
discuss other potential concerns that require
consideration. These sections are usually
concise and explain how the proposed solution
affects the concern and how it will be addressed.
Below, we will briefly pass through typical
concerns.

Cost analysis presents rough estimates of
the cost to run the proposed solution. Typically,
this includes the required infrastructure costs
(for example, compute instances, databases,
storage devices, etc), third-party services, roll-
out costs, etc.

Regional considerations describe how the
proposed solution will be running in different
regions. It includes localization, latency
considerations, and various regulatory concerns
like customer data storage place, etc.

The third-party services, platforms, and
software section explains the need for those
services for the proposed solution, associated
costs, security and privacy concerns, limitations,
risks, etc.

Resilience characteristics describe the
impact on the system in case of various failure
types (e.g., single or multiple instance outage, etc).

Scalability reveals if the proposed solution
could handle the increased workload or user
demands without significant degradation in
performance.

This section is not limited to the concerns
mentioned above. Other noteworthy concerns are
Accessibility, Configuration, Idempotency,
Risks, and others.

MEHEOXMEHT

MEHEOXXMEHT

EKOHOMIKA TA CYCIMNINbCTBO

Bunyck # 63 / 2024

3.4. Security and Privacy

Due to their importance, security and privacy
concerns are put into a dedicated section of
TDD. Engaging with privacy and security teams
as early as possible is recommended to ensure
that designs take them into account from the
ground up.

Security concerns should describe how the
proposed solution mitigates potential threats
and affects the security of other components,
services, and systems.

Data Protection and Privacy Compliance
indicate if the solution retains user-related data
or transmits such data to (or from) third-party
vendors. It should also indicate if the solution
needs to comply with local laws and legal policies
on data privacy, for example, the General Data
Protection Regulation (GDPR).

The Data Retention section lists retention
periods for various types of data, the mechanisms
of deleting unneeded data, and data from users
requesting to be excluded from processing.

3.5. Testing

This section explains how to ensure the
proposed solution works. Typically, this means
writing a Testing Plan, highlighting how we
would test the changes, and explaining how
these tests ensure user requirements are met.
Various types of testing may be necessary,
such as Unit Testing, Integration Testing,
Load, Performance Testing, User Acceptance
Testing, and Regression Testing. In the case of
dedicated documents for these types of testing,
TDD may reference them instead of going
into detail.

Test data is crucial in ensuring the software
is thoroughly tested and capable of handling
various scenarios. This document section should
clarify what test data to use and how to create or
generate it manually.

Besides mentioned above, this section may
also review how Quality Assurance will be
performed during the development process, how
the engineering team could prevent defects,
and how to improve the overall quality of the
developed solution.

3.6. Implementation

This section includes the actionable items
(i.e., Epics and Tasks) required to complete and
ship the proposed solution. It defines, as well,
a Timeline and Milestones to help keep the
process organized.

Each milestone should point to the metrics
indicating this milestone passed, and tasks
should have time estimates for how long it takes
to be completed.

3.7. Rollout and Deployment

This section describes the plan for
solution Deployment and the Deployment
Environments. It includes a description of
various activities, like configuring the software,
installing it on the necessary servers or devices,
and making it operational for end-users.

To minimize the risks and disruptions that
may occur with a full-scale deployment, it is a
good practice to write down a Rollout Plan.
It involves a phased or controlled release (often
via feature flags) of the changes, allowing for
testing, feedback gathering, and addressing
potential issues before full Deployment.

It is essential to include a Rollback Plan in
case issues occur during or after the deployment
of the solution. It includes the necessary steps
to restore the system's functionality and stability
and avoid data loss.

To minimize surprises to others, a proper
Communication Plan should be presented.
This section should describe the impact of
the changes on users, stakeholders, and the
organization and the most appropriate time to
communicate updates.

3.8. Runbook

The purpose of a runbook is to provide step-
by-step guidance on how to perform specific
tasks, including troubleshooting, maintenance,
deployment, or recovery procedures. They are
designed to be practical references that enable
individuals to execute tasks effectively, even if
they are unfamiliar with the specific process or
system.

First, this section should define Health
Metrics so it is clear how to ensure the solution
works as expected. Once metrics are defined, itis
vital to describe how we will perform continuous
Monitoring of these metrics. In addition to
monitoring, itis crucial to set up Alerts that should
pop up in case of any issues with the solution.
Each alert should list the monitored metric, alert
thresholds, possible impact, and Troubleshoot
instructions. To efficiently troubleshoot any
issues, describing the Logging and Tracing
setup may be helpful.

It is the right place to define various Opera-
tional Procedures, like data and solution reco-
very in case of failures, scaling up and down, etc.

3.9. Evaluation

It is crucial to describe how the success of
the implementation of proposed solutions can be
evaluated. To effectively do this, describe the list
of Metrics to capture and tools used to measure
performance against these metrics. Include a
Cost-benefit Analysis, if applicable.

Bunyck # 63 / 2024

EKOHOMIKA TA CYCIMINbCTBO

Also, this section may discuss the Impact
Assessment of the proposed solution on users,
stakeholders, and the organization.

3.10. Open Questions

In this section, please list any items that
require feedback from other engineering teams.
These may include problem areas that are
unclear on how to resolve and require additional
research, investigation, or decisions before
implementation.

3.11. Next steps

Outline the next steps to take and assign
action items required to move forward with the
implementation of the proposed solution.

4. Discussion

In order to evaluate the developed template,
in total, four practitioners and academic experts
in the area of software development and project
management were asked to evaluate and refine
the template, and based on their input, attributes
were added, deleted, or refined.

Respondents emphasized the completeness
and ease of use of the proposed template.

Furthermore, the suggested template
underwent real-world evaluation within an IT
company specializing in internet security. This
template served as the foundational structure
for the TDD of a new project undertaken by the
company. Overall, it received a good appraisal,
and most of the stakeholders indicated its
efficacy in guiding the development.

of content for each section (subsection)
and providing tooling support for template
applications.

5. Conclusion

In this paper, we discussed what functions
Technical Design Documents serve inside
organizations' software development life cycle
and proposed a standardized TDD template
structure.

We extensively researched popular TDD
templates, visualized corresponding template
structures in mindmaps, and applied coding
techniques to define a standardized structure for
this type of document.

Thefinalstructureencounters11mainsections:
Introduction, Solutions, Further Considerations,
Security and Privacy, Testing, Implementation,
Rollout and Deployment, Runbook, Evaluation,
Open Questions, and Next Steps. The majority
of them consist of multiple nested subsections.
We included a summary of the contents of each
section and subsection.

Depending on the organization, this template
could be used as is or serve as a basis for the
company-specific structure of TDD and may
include all or part of the sections proposed.

The proposed template was evaluated
by industry experts and tested on a real-
world project. Overall, positive feedback was
received.

In the future, we plan to gather more feedback

Potential improvements suggested by from real world applications and enrich the
respondents include providing examples template with examples of content.
REFERENCES:

1. Aghajani, E., Nagy, C., Vega-Marquez, O. L., Linares-Vasquez, M., Moreno, L., Bavota, G., & Lanza, M.
(2019). Software Documentation Issues Unveiled. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 1199-1210. https://doi.org/10.1109/ICSE.2019.00122

2. Alwazae, M., Perjons, E., & Johannesson, P. (2015). Applying a Template for Best Practice Documentation.
Procedia Computer Science, 72, 252—-260. DOI: https://doi.org/10.1016/j.procs.2015.12.138

3. Bogolii, O. (2023). Agile Software Development in a Remotely Working Geographically Distributed Team:
A Systematic Review. European Project Management Journal, 13(1): 23-36. DOI: 10.56889/idnv2224

4. Brown, S. (2018). The C4 Model for Software Architecture. InfoQ. https://www.infoq.com/articles/C4-architec-

ture-model/

5. Caponi, A., Di lorio, A., Vitali, F., Alberti, P., & Scata, M. (2018). Exploiting patterns and templates for technical
documentation (p. 9). DOI: https://doi.org/10.1145/3209280.3209537

6. Donovan, R. (2020, April 6). A practical guide to writing technical specs. Stack Overflow Blog. URL:
https://stackoverflow.blog/2020/04/06/a-practical-guide-to-writing-technical-specs/

7. Dupont, E. (2024, January 18). Create a functional and technical design document — Dynamics 365. URL:
https://learn.microsoft.com/en-us/dynamics365/guidance/patterns/create-functional-technical-design-document

8. Farrand, P., Hussain, F., & Hennessy, E. (2002). The efficacy of the “mind map” study technique. Medical
Education, 36, 426—431. DOI: https://doi.org/10.1046/j.1365-2923.2002.01205.x

9. Golman, J. (2019, September 12).

Design

Docs at Google. Industrial Empathy. URL:

https://www.industrialempathy.com/posts/design-docs-at-google/

MEHEOXMEHT

MEHEOXXMEHT

EKOHOMIKA TA CYCIMNINbCTBO Bunyck # 63 / 2024

10. Henderson, C. (2024, March 21). Top 10 challenges documentation software solves. Paligo. URL:
https://paligo.net/blog/software/top-10-challenges-documentation-software-solves/

11.Jackson, S. E., Chuang, C.-H., Harden, E. E., & Jiang, Y. (2006). Toward Developing Human Resource
Management Systems for Knowledge-Intensive Teamwork. In Research in Personnel and Human Resources
Management (Vol. 25, pp. 27-70). Emerald (MCB UP). DOI: https://doi.org/10.1016/S0742-7301(06)25002-3

12. Johannesson, P., & Perjons, E. (2014). An Introduction to Design Science. Springer International
Publishing. DOI: https://doi.org/10.1007/978-3-319-10632-8

13. Kajko-Mattsson, M. (2008). Problems in Agile Trenches. In ESEM'08: Proceedings of the 2008
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (p. 119). DOI:
https://doi.org/10.1145/1414004.1414025

14. Kalfat, H., Oussalah, M., & Chikh, A. (2023). ADM: An Agile Template for Requirements Documentation
(p. 501). DOI: https://doi.org/10.5220/0012122400003538

15. Kingson, S. (2023). Guide to Create Technical Specification Document with Example. Document 360.
https://document360.com/blog/technical-specification-document/

16. LinkedIn community. (2023). What are the most common software project documentation challenges?
Linkedin. https://www.linkedin.com/advice/1/what-most-common-software-project-documentation-oyqnc

17. Mage. (2021, September 14). How to Write Technical Design Docs. Dev.to. https://dev.to/mage_ai/how-to-
write-technical-design-docs-c02

18. Nurlaila, A. P. (2013). THE USE OF MIND MAPPING TECHNIQUE IN WRITING DESCRIPTIVE TEXT.
Journal of English and Education, 1(2), Article 2.

19. Orosz, G. (2018, October 03). Scaling Engineering Teams via RFCs: Writing Things Down. The Pragmatic
Engineer. Retrieved July 24, 2023, from https://blog.pragmaticengineer.com/scaling-engineering-teams-via-writing-
things-down-rfcs/

20. Seghiri, M., & Luque Giraldez, A. (2023). Designing a technical specifications template in English a cor-
pus-based approach (EN PRENSA).

21. Stanford University IT. (n.d.). Technical Design. Project Management | University IT. Retrieved June 24,
2023, from https://uit.stanford.edu/pmo/technical-design

22. Uikey, N., Suman, U., & Ramani, A. (2011). A Documented Approach in Agile Software Development. Inter-
national Journal of Software Engineering, 2011-2013.

23. Wolfswinkel, J. F., Furtmueller, E., & Wilderom, C. P. M. (2013). Using grounded theory as a method for
rigorously reviewing literature. European Journal of Information Systems, 22(1), 45-55. DOI: https://doi.org/10.1057/
€jis.2011.51

