Given the fact that a decisive step in making a managerial decision by the investor is the assessment of investment attractiveness of an economic entity, the theme of the article remains relevant today.

Investment attractiveness is an economic category that demonstrates the efficiency of operation and is characterized by a number of quantitative indicators and qualitative components that cover different aspects of business and determine the possibility of profit maximization for investors (in comparison with other objects of possible investments) in the case of certain level of risk.

The article conducts a comparative analysis of the theoretical-economic essence of a concept “investment attractiveness of enterprise”, as a result of which, among a lot of definitions of this concept, the authors distinguished the following approaches: factor, internal evaluation, integral, comparative or rating. When analysing definitions of the mentioned concept, its main meaningful elements are distinguished.

Conducted analysis of modern methods of analysis of investment attractiveness of an enterprise, depending on approaches, allowed summarizing them conditionally into the following groups: rating, integral, factor, matrix, and a method built on fuzzy logic elements.

In the process of research, there was established a need of modelling of investment attractiveness of an enterprise under the influence of factors for the purpose of making managerial decisions for owners and managers, shareholders and investors. Owners and managers are constantly faced with the question of a combination of activities of the enterprise taking into account the factors of influence for the purpose of increasing its attractiveness as an object of investment. In order to solve this issue, the authors proposed a conceptual model of diagnostics of investment attractiveness of an enterprise built as “decision tree”.

“Decision tree” is a method of classification and forecast of indicators, for which high-quality construction a sufficiently large amount of input data and the value of the output are required. The result of “decision tree” construction is shown schematically and has rules, according to which users can draw conclusions and make a corresponding decision.